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PROPER COHOMOLOGICAL DESCENT IN RIGID
COHOMOLOGY

FRÉDÉRIC DÉGLISE

Introduction

We fix a complete discrete valuation ring V of mixed characteristic (0, p)
with residue field k and fraction field K.

The purpose of the talk is to prove the theorem of proper descent in rigid
cohomology due to Tsuzuki and to expose some of its consequences.

To do so, we will have to recall a piece of the general descent theory
which rely deeply on simplicial methods. We will do that as exposed by
Chiarellotto and Tsuzuki to make technicalities less heavy.
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1. Geometric setting

We will adopt the definitions and notations of [3].
In general, k-schemes will be assumed to be locally of finite type.
We will simply call pair any pair of k-schemes (X, X̄) such that X is an

open subscheme of X̄. A morphism of pairs is a commutative diagram

Y //
◦
w ��

Ȳ
w̄��

X // X̄.

We say the morphism is strict if the square is cartesian.
We will overall consider triples X which are triples of schemes (X, X̄,X )

such that
(1) (X, X̄) is a pair,
(2) X is a formal π-adic V-scheme locally of finite type
(3) X̄ is a closed subscheme of X ×V k.

We will always use the same typography for the three schemes which com-
pose the triple X which will ease notation.

A morphism w : Y→ X of triples is a commutative diagram

Y //
◦
w ��

Ȳ //

w̄ ��

Y
ŵ��

X // X̄ // X .

We say the morphism is strict (resp. semi-strict) if the two squares are
cartesian (resp. first square is cartesian). The category of triples is denoted
by T rV .

The same rule for the typesetting of morphisms will apply.

Let’s introduce the concepts of rigid cohomology in this setting.
For a triple X, we will denote by ]X̄[ the tube of X̄ in the generic fiber

XK ”à la Raynaud”. It is functorial. For w : Y → X a morphism of triple,
we denote by w̃ :]Ȳ [→]X̄[ the induced morphism.

We will denote conventionally by jX : X → X̄ the canonical immersion
and by j†X the dagger construction on sheaves over the rigid analytic space
XK . Finally, we put O†X = j†X

(
O]X̄[

)
and denote by O†X−M odc the category

of coherent O†X-module.
These categories are functorial. Let w : Y→ X be a morphism of triples.

We associate to w̃ a couple of adjoint functors (w̃−1, w̃∗). There exist a
canonical morphism

w̃−1O†X → O
†
Y.

Thus we deduce a couple of adjoints functor

(w̃†, w̃∗) : O†Y−M odc → O†X−M odc

with the formula
w̃†E = j†

(
O†Y ⊗w̃−1O†

X
w̃−1E

)
.

We will use the following fact :
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Proposition 1.1. Let w : Y → X be a morphism of triples such that Ŵ :
Y → X is flat around Y .

Then the morphism w̃† is exact.

Proof. If w is the obvious morphism (X, X,X )→ (X, X̄,X ), w̃† is the nat-
ural inclusion

O†
j†O]X̄[

−M odc → O†O]X[
−M odc

which is exact and faithful according to [2], 2.1.11.
Thus an easy computation showsz we can reduce to the case X = X̄ and

Y = Ȳ . Let Y ′ be an open subscheme of Y flat over X . As ]Y [Y=]Y [Y ′ , we
can suppose ŵ is flat.

Then the morphism w̃ is flat which imply the result for coherent modules.
�

2. Hypercoverings

2.1. Simplicial objects. For any integer n ≥ 0 we denote by
(1) ∆n the ordered set of integer [0, n]
(2) (face operators) δn,i : ∆n → ∆n+1 the increasing injection such that

i /∈ Im(δn,i) for 0 ≤ i ≤ n + 1
(3) (degeneracy operators) σn,i : ∆n+1 → ∆n the increasing surjection

such that σn,i(i + 1) = σn,i(i) for 0 ≤ i ≤ n.
We denote as usual by ∆ the category with objects ∆n, n ≥ 0, and with

increasing map as morphisms. Any such map is a composite of maps δn,i

or σn,i. Note that the definition of these latter maps impose naturally some
relations on their compositions.

Let C be an arbitrary category. A simplicial (resp. cosimplicial) object
of C is a contravariant (resp. covariant) functor X• : ∆op → C . This
corresponds to a sequence of objects and maps of C as follows

X0 s0,0 // X1

d0,0

oo

d0,1oo s1,0 //

s1,1 // X2 ...

d1,0

oo

d1,1oo

d1,2oo

We denote by ∆opC the category of simplicial objects with natural trans-
formations as morphisms.

We will constantly use in this talk the case where C = T rV . Simplicial
objects of T rV will be called simplicial triples.

Example 2.1. Let w : Y→ X be a morphism of triples.
We can define the Čech complexe of w as the following simplicial triple

Y s0,0 // Y×X Y
d0,0

oo

d0,1oo
...

where s0,0 is the diagonal immersion, d0,0 and d0,1 the two canonical projec-
tion. We denote this simplicial triple by coskX

0 (Y).
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2.1.1. In the case of an abelian category A , we associate to simplicial object
A• of A a complexe concentrated in non negative degrees :

A0
d0←− A1

d1←− A2 ...

with dn =
∑n+1

i=0 (−1)idn,i. It is classically called the complexe of alternating
faces.

Note that the same definition can be apply dually to cosimplicial objects
of A .

2.2. Coskeleton. Let fix a triple X. We will work with the category T rV/X
of triples over X.

For an integer n ≥ 0, we let ∆≤n be the full subcategory of ∆ with
objects ∆i for 0 ≤ i ≤ n. A n-truncated simplicial triple over X will be a
contravariant functor ∆≤n → T rV/X.

There is an obvious restriction functor

skn : ∆opT rV/X→ (∆≤n)opT rV/X, X• 7→ (X0, ..., Xn).

As the category T rV/X has arbitrary finite limits, this functor has ar right
adjoint denoted by cX

n . Following Verdier, we will consider the coskeleton
functor to be the composite coskX

n = cX
n ◦ skn. For any simplicial triple Y•

over X, we have an adjoint morphism Y• → coskX
nY•. 1

Example 2.2. In the case n = 0, coskX
0 (Y) is simply the Čech complex

introduced in the previous example.

Note that this definition keeps sense for n = −1. In this case, coskX
−1 is

the functor with value the constant simplicial tripel X (X in each degree,
identity as transition morphisms).

2.3. Definition. Let t be a class of morphisms of triples which is stable
under composition and base change.

Definition 2.3. Let X be a triple.
A t-hypercovering of X is a simplicial triple w• : Y• → X over X such

that for any integer n ≤ 0, the canonical functor Yn → [coskX
n−1(Y•)]n is a

covering.

Example 2.4. (1) Let Y a−→ X be a morphism in t. Then coskX
0 (Y)→ X

is a t-hypercovering of X because for n > 0, the morphism

(coskX
0 Y)n → [coskX

n−1(coskX
0 Y))]n = (coskX

0 Y)n

is the identity.
(2) Based on the previous example, one can construct recursively hyper-

coverings using the following method :
Suppose we are given a morphism N1

b−→ Y ×X Y in t. Then we
can define a 1-truncated simplicial object

Y×X Yp1

uujjjjjjj

Y 1Y // N1 t Y.

btsjjVVVVVVV

bts
tthhhhhhh

Y×X Yp2

iiTTTTTTT

1This functor is an analog of the truncation functor for complexes. This can be made
precise using the Dold-Kan equivalence for simplicial abelian groups.
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Then coskX
1 (Y...N1 t Y) is again a t-hypercovering.

We can iterate this process to produce more and more complicated
hypercoverings.

Remark 2.5. Recall that in any topos, the Čech cohomology of a sheaf F does
not coincide with the cohomology of F . This is the reason why hypercovering
were invented. Indeed, Čech cohomology is a limit of cohomology of F
calculated through t-hypercovering of example 1, for t being the class of
coverings.. Now if we take a similar limit over all t-hypercoverings, then the
resulting cohomology agree with the cohomology of F . This fact is the basis
of cohomological descent theory.

We will use this definition particularly when t is the class of morphism
w : Y→ X such that

(1) w is semi-strict,
(2)

◦
w is proper surjective,

(3) w̄ is proper,
(4) ŵ is smooth around Y .

In this case a t-hypercovering will be called simply a proper hypercovering.

3. Čech complex

3.1. Sheaves over a simplicial triple. In order to define a sheaf over a
simplicial triple, we introduce the category F with

(1) objects are pairs (F, X) such that F is a sheaf over the rigid analytic
space ]X̄[.

(2) morphisms are (φ, f) : (G, Y)→ (F, X) with f : Y→ X a morphism
of triples and φ : f−1F → G.

Thus there is a natural projection functor F → T rV . 2

If X• is a simplicial triple, a sheaf over X• is a simplicial object of F
whose projection on T rV is X•. In particular, it is given by

(1) for any integer n ≥ 0, a sheaf Fn over ]X̄n[
(2) for any transition map η : Xn → Xm of X•, a morphism of sheaves

Fm → η̃∗F
n.

We will simply denote by F • such a simplicial sheaf. The sheaf Fn will be
called the fiber over n of F •.

Example 3.1. Let X• be a simplicial triple. Using the classical functoriality
of j†, we readily see that the sequence of sheaves O†Xn

with the canical com-
patibility morphisms as transition morphism define a sheaf over X• simply
denoted by O†X•

.

We denote by X̃• the category of sheaves over X•. Following [1], exp.
6, this is in fact a topos. The sheaf O†X•

is a ring in this topos which is
moreover coherent. The category of modules over O†X•

is given by sheaves
M• such that Mn is a O†Xn

-module over ]X̄n[. As in any topos, it is an
abelian category with enough injectives.

2In the terminology of Grothendieck, F is a fibered topos but we won’t enter into these
details here.
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We say a O†X•
-module is coherent if is it coherent fiberwise and we denote

by O†X•
−M odc the corresponding category.

3.2. Functoriality. Let X be a triple. A simplicial triple over X is a sim-
plicial object of the category T rV/X of triples over X.

Example 3.2. If Y → X is a morphism of triples, the Čech complex
coskX

0 (Y) is naturally an X-simplicial triple.

Let w• : Y• → X be a general simplicial triple over X.

3.2.1. For any O†X-module E, the sequence w̃†
nE has a structure of O†Y•

-
module :

Indeed, for any transition morphism η : Yn → Ym, we can consider the
canonical morphism

w̃†
mE → η̃∗w̃

†
nE

because η̃†w̃†
m = w̃†

n.
We thus have defined a functor

w†
• : O†X−M odc → O†Y•

−M odc.

Example 3.3. Let w : Y→ X be a morphism of triples such that ŵ : Y → X
is flat around Y . Consider the morphism w• : coskX

0 (Y) → X. Then, from
proposition 1.1, the functor w†

• is exact as for all n, w†
n is exact.

More generally, if w• : Y• → X is a simplicial triple over X such that for
any n, ŵn is flat around Yn, then w†

n is exact.

If E• is a complex of O†X-modules, applying w†
• to each term ofM• gives

a complex of O†Y•
-modules which we denote again by w†

•E
•.

3.2.2. Consider a O†Y•
-module F •. Then the sequence (w̃n)∗Fn for n ∈ N

defines a cosimplicial O†X-module :
For any map ∆m → ∆n corresponding to the transition morphism η :

Yn → Ym, we apply w̃m∗ to the structural morphism Fm → η̃∗F
n which

gives a morphism
w̃m∗F

m → w̃m∗η̃∗F
n = w̃n∗F

n

as needed.
We denote by C†(X, Y•;F •) the associated (cohomological) complex of

alternating faces.

If we are given a bounded below complex F •,• of sheaves over X•, then
applying C†(X, Y•; .) to each term of this complex gives a bicomplex. We
again denote by C†(X, Y•;F •,•) the total complex of this bi-complex. Its
term in degree n is ∏

r+s=n

(w̃r)∗F r,s.

It is an easy exercice to see the functors(
w†
•, C†(X, Y•; .)

)
: Comp(O†Y•

−M odc)→ Comp(O†X−M odc)

are adjoints. Indeed, in the terminology of Deligne and Saint-Donas, C†(X, Y•; .)
would have been denoted by w•∗.
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3.3. Derived Čech complex. Consider again the situation of an aug-
mented X-simplicial triple w• : Y• → X.

The functor C†(X, Y•; .) on complexes is left exact. As usual, it is possible
to derive it on the right by choosing injective resolution in O†Y•

−M odc.
Any complex F •,• of O†Y•

-modules has an injective resolution F •,• → I•,•

and we define the derived Čech complex of F •,• as

RC†(X, Y•;F •,•) = C†(X, Y•; I•,•).
As in any abelian category with enough injectives, this complex is well-
defined up to quasi-isomorphism and induces a triangulated functor

RC†(X, Y•; .) : D+(O†Y•
−M odc)→ D+(O†X−M odc).

When w†
• is exact, we then have a couple of adjoint functors(

w†
•, RC†(X, Y•; .)

)
: D+(O†Y•

−M odc)→ D+(O†X−M odc).

4. The setting of cohomological descent in rigid cohomology

4.1. Definitions. We are ready to introduce our main definition in the
theory of cohomological descent for rigid cohomology :

Definition 4.1. Let w• : Y• → X be an augmented simplicial triples.
We say w• is cohomologically descendable if
(1) w†

• is exact.
(2) For any coherent O†X-module E, the canonical adjunction morphism

E → Rw•∗w
†
•(E)

is a quasi-isomorphism.
We say w• is universally cohomologically descendable if it is cohomologi-

cally descendable after any base change.

We have to introduce a variant of this definition in order to grasp rigid
cohomology.

Let w : Y→ X be a triple satisfying condition
(*) ŵ is smooth around Y .

Then j†Ω1
]Ȳ [/]X̄[

is a locally free O†Y-module. For any coherent O†Y-module
F , we define the De Rham complex of F (considered with the null connec-
tion), by

DR(Y/X;F ) = F
1⊗d1

−−−→ F ⊗O†
Y

j†Ω1
]Ȳ [/]X̄[ → ...

This definition is functorial in F and Y. Thus we can extend it in an obvious
way to the case of simplicial triples Y• over X which satisfy condition (*)
fibrewise.

Definition 4.2. Let w• : Y• → X be a simplicial triples over X satisfying
condition (*) fibrewise.

We say w• is De Rham cohomologically descendable if for any coherent
O†X-module E, the canonical adjunction morphism

DR(Y•/X;w†
•E)→ Rw•∗w

†
•DR(Y•/X;w†

•E)
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is a quasi-isomorphism.

4.2. Fundamental properties.

Theorem 1 (Chiarellotto-Tsuzuki). Consider a morphism of simplicial
triples over X

Y′ f //

w′ $$IIIII Y
wzzvvvvv

X
Suppose the morphism f is u.c.d. (resp. De Rham u.c.d.). Then the follow-
ing conditions are equivalent :

(i) w is c.d. (resp. De Rham c.d.).
(ii) w′ is c.d. (resp. De Rham c.d.).

(idea). We denote by f• (resp. w•, w′
•) the projection morphism of the Čech

simplicial triples associated to f (resp. w, w′).
The idea of the proof is to extend the canonical natural transformation

Id→ Rf•∗f
†
•

to the category of sheaves over coskX
0 (Y). Applying this extension to w†

•E

for a coherent O†X-module, we obtain a natural morphism

Rw•∗w
†
•E → Rw′

•∗(w
′
•)
†E

and we proove it is still an isomorphism. �

We can always reduce the case of hypercoverings to the case of Čech
simplicial triple. We adopt the following definition.

Definition 4.3. Let w : Y→ X be a morphism of triples.
We say w is c.d. (resp. u.c.d., De Rham c.d.,De Rham u.c.d) if the

induced morphism w• : coskX
0 (Y)→ X is so.

Example 4.4. Let w : Y → X ba morphism of triples. Then w is u.c.d.
and De Rham u.c.d. in the following cases :

(1) if w is strict and ŵ is an open covering
(2) if

◦
w is an isomorphism, w̄ is proper, ŵ is smooth around Y .

Then the following proposition is a basic step argument in the proper
descent theorem.

Proposition 4.5. Let t be a class of morphisms of triples stable under
composition and base change.

Then the following properties are equivalent :
(1) Any t-hypercovering Y• → X is u.c.d. (resp. De Rham u.c.d.)
(2) Any morphism Y→ X in t is u.c.d. (resp. De Rham u.c.d.)

(idea). We have to prove 2⇒ 1.
Take a t-hypercover w• : Y• → X. By hypothesis, coskX

0 (Y•)→ X is u.c.d.
Now we use the following diagram

coskX
n(Y)

φn //

w(n) ''NNNNNN
coskX

n−1(Y)

w(n−1)wwnnnnnnn

X
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We can generalise the preceding theorem to the case of the morphisms of
type φn. Thus we obtain recursively that

coskX
n(Y)→ X

is u.c.d. Now we use the fact the complex

Rw•∗w†
•E

can be all reconstructed using the complexes

Rlim←−
n∈N

w
(n)
∗ w(n)†E.

�

5. The proof of the proper descent theorem

We now prove the theorem of Tsuzuki :

Theorem 2. Let X be a triple.
Any proper hypercovering w• : Y• → X is u.c.d. and De Rham u.c.d.

We won’t bother about the exactitude of w̃• according to proposition 1.1.
We can reduce this theorem to the following :

Theorem 3. Let w : Y→ X be a proper covering such that w̄ is surjective.
Then w is c.d.

Proof. Using proposition 4.5, we reduce to the case of a proper covering
w : Y→ X.

Using that strict Zariski covering are c.d. and the theorem 1, we may
assume w̄ is of finite type.

A general argument using the Hoge filtration of DR(Y/X; (E, 0)) shows
that u.c.d. for w imply De Rham u.c.d. for w.

Finally using the second example of 4.4, we can assume w̄ is surjective. �

Using the fundamental properties of the previous subsections, we can
reduce to the following cases :

(1) w̄ is a closed covering.
(2) Ȳ /X̄ is a projective space and w̄ is the canonical projection.
(3) X̄ = Spec(A), Ȳ = Spec(A[x]/(f)) for a monic polynomial f ∈ A[x]

and w̄ is the natural finite morphism.
(4) X̄ and Ȳ are integral and w̄ is birational.

In all these cases we put Y• = coskX
0 (Y).

We give just rough ideas :
1. The idea is to reduce to a case where w̃ :]Ȳ [→]X̄[ is quasi-Stein. In

this case, we have Rrw̃q∗w
†
qE = 0 for r > 1.

Then we consider the factorisation

E → C†(X, Y•;w†
•E)→ RC†(X, Y•;w†

•E).

The second arrow is an isomorphism using the vanishing of its second
line by Kiel’s theorem B. We may also assume w is strict and ŵ is
affine which imply the first arrow is an isomorphism.
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2. We prove more generally if w is a strict triple such that ŵ is flat
and w̄ is surjective, the w is c.d. This in turn follows from Tate’s
acyclicity theorem.

3. Follows from an induction on the degree of f and the bvoe flat de-
scent result.

4. We can reduce to the case where w̄ is a blow-up with respect to an
ideal generated by two elements. Then, it follows from the explicit
formula of blow-up.

Then we make an induction on the dimension d of Ȳ which allow to reduce
to these cases. The case d = 0 again follows from the flat descent result.

6. Applications

6.1. Descent spectral sequence. We state the optimal form of the de-
scent spectral sequence :

Theorem 4. Let X be a separated finite type k-scheme and g• : Y• → X be
a proper hypercovering of X. Then for any overconvergent isocristal E on
X/K, there exists a spectral sequence

Ep,q
1 = Hq

rig(Yq/K; gq∗E)⇒ Hp+q
rig (X/K;E).

The proof of this theorem rely on the proper descent theorem for triples.
Ideally we have to find a triple X over X and a simplicial triple Y• → X
over Y• → X.

Such an ideal situation cannot be achieved. Instead, we have first to try
to refine the covering Y• → X such that the refinement can be covered by
a proper hypercovering of pairs of (X, X̄) for a completion X̄ of X. This is
possible only in a particular case where the hypercovering iq split and we
did it inductively on the coskeleton of Y•.

Then for a proper hypercovering (Y•, Ȳ•) → (X, X̄) of pairs, we do the
same thing which works even in the non split case.

Suppose we are now in the ideal situation stated above. We have a proper
hypercovering Y• → X. Let S = (k, k,V).

Using the proper descent theorem, we obtain a canonical isomorphism

RnC†(S, Y•; DR(Y•/S;w†
•(E,∇))) = Hn

rig(X/K;E).

Now recall RC†(S, Y•; DR(Y•/S; (E,∇))) is the total complex of a bicom-
plex. Thus we can filtrate this complex diagonally. The spectral sequence
obtained is the one of the theorem.

6.2. Finiteness of rigid cohomology. Let X be a separated k-scheme of
finite type.

Using De Jong’s lateration theorem,
(**) there exist a proper hypercover Y• → X such that every Yn is smooth
over a purely inseparable finite extension kn of k.

Proposition 6.1. Let X be a separated k-scheme of finite type.
Then for all r ∈ N, Hr

rig(X/K) is of finite type over K.
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Proof. Place ourselves ine the situation of (**). Thus, Yn = (Yn ×k kn)red
and we have

Hr
rig(Yn/Kn) = Hr

rig(Yn ×k kn/Kn) = Hr
rig(Yn/K)⊗K Kn

by base change. The first vector space is of finite type over Kn as Yn/kn is
smooth using the result of Berthelot. Thus Hr

rig(Yn/K) is of finite type over
K and the result follows from the descent spectral sequence Thus the finite-
ness follows from the descent spectral sequence for Y•/X and the finiteness
theorem of Hr(Ys/K) of Berthelot. �

Proposition 6.2. Let X be a separated k-scheme of finite type.
Let σ be a Frobenius endomorphism of K. Then the Frobenius morphism

in rigid cohomology

Φ : σ∗Hr
rig(X/K)→ Hr

rig(X/K)

is an isomorphism for all r ∈ N.

Proof. Suppose k is a perfect field. Let consider the situation (**). Then
kn = k. THe spectral sequence associated with Y•/X is compatible with the
Frobenius. Thus we are reduced to the case where X/k is smooth. Thne
the assertion follows from Poicar duality.

We reduce to the case of a perfect field by considering an extension K ′/K
of complete discrete valuation field with perfect residue field k′ and using
once again the base change. �

Remark 6.3. These two propositions are equally true for rigid cohomology
with compact support using the existence of compactifiations and the local-
isation long exact sequence.

Fix an isomorphism ι : Q̄p → C. Suppose K is a subfield of Q̄p with
finite residue field k with pa elements. Let σ : K → K be a Frobenius
endomorphism such that σa = 1. For any X/k seperated of finite type, we
define a Frobenius endomophism

Φa : Hr
rig(X/K)→ Hr

rig(X/K)

which is an isomorphism using the preceding proposition.
Recallthat we say Hr

rig(X/K) is ι-mixed (resp. ι-pure) of weight less than
n (resp. weight n) if for any eignevalue α of Φa, ι(α) is an algebraic number
such that |ι(α)| = pat/2 for t ≤ n (resp. t = n).

Theorem 5. Let X be a proper k-scheme of finite type.
Then (Hr

rig(X/K),Φa) is ι-mixed of weight less than r.
If X is smooth over k, it is ι-pure of weight r.

Proof. We can apply the theorem of Katz-Messing to rigid cohomology as it
satisfies Poincar duality (Berthelot), weak Lefschetz (Chiarellotto) and the
Lefschetz fixed point formula (Etesse, Le Stum). Thus the theorem follows
in the case where X/k is projective smooth.

There exist a proper hypercovering Y• → X such that Yn/ is projective
surjective using De Jong and Chow lemma. The conclusion follows from the
descent spectral sequence. �

As a consequence, we obtain that the descent spectral sequence of a proper
hypercovering Y• → X with Yn smooth over k is degenerated at the E2-term.
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