
ON THE RIGIDITY THEOREM OF SUSLIN AND VOEVODSKY

F. DÉGLISE, COLLABORATION WITH D.C. CISINSKI

Abstract. The so called rigidity theorem fundamentally initiated by A.Suslin

in K-theory has evolved in many versions. The most far-reaching formulation,
obtained by Suslin and Voevodsky, asserts an equivalence of categories between

effective etale torsion motives over a field k with the derived category of torsion

Galois modules over k.
Recently, J. Ayoub succeeded in extending this result to the stable étale

motivic homotopy category over any base, a category underlined by Morel

as a possible definition for étale motives. The most innovative part of his
work, based on earlier results of P.A.Østvær and O.Röndigs, is the avoiding of

transfers.

In this talk, I will describe another approach, obtained in collaboration
with D.C. Cisinski, to the generalization of the rigidity theorem of Suslin and

Voevodsky, which is based on the theory of motivic complexes of Voevodsky.

In particular, we are able get localization and cancellation for torsion étale
motivic complexes, and also to deal with 2-torsion, which is missed in the

approach of Ayoub.
Finally, the consequences for integral h-motives of finite type, the very

first theory of Voevodsky, are very strong: they form a complete triangulated

formalism in the sense of Grothendieck whose torsion coincides with the for-
malism of SGA4 and rational part coincides with Beilinson motives. This gives

a new insight on nowadays theory of mixed motives and its relation with the

tale formalism.

————————–

Contents

1. Introduction: Rigidity theorems 1
2. Torsion étale motivic complexes 3
3. h-motives 6
Introduction 6
References 7

1. Introduction: Rigidity theorems

The rigidity theorem of Suslin arose from the will of computing the algebraic
K-theory of an algebraically closed field. Let us recall the following Quillen-
Lichtenbaum conjecture (stated by Gersten in [Ger73]):

Conjecture. Let F be an algebraically closed field of exponential characteristic p.
Then for any integer i > 0, the K-theory group Ki(F ) is divisible and moreover:

Ki(F )tor =

0 if i is even,

lim−→
m∧p=1

µm(F )⊗,j if i = 2j − 1,

where µm(F ) denotes the group of m-th roots of unity in F .
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A striking fact predicted by this conjecture is that the torsion part of the K-
groups of an algebraically closed field of characteristic p is independant of the field
considered. This remark probably lead Suslin to the following theorem, which is
the first form of the rigidity theorem:

(Rig1) Suslin, [Sus83].– Let F/F0 be an extension of algebraically closed fields and
n an integer n invertible in F0. Then:

K∗(F0;Z/nZ)
∼−→ K∗(F ;Z/nZ).

In fact, at the time where Suslin proved that theorem, it solved the Quillen-
Lichtenbaum conjecture in positive characteristic because of the computation of
the K-theory of finite fields due to Quillen (cf [Qui72]). Shortly after obtaining the
above result, Suslin had proved the Quillen-Lichtenbaum conjecture in the case of
the complex numbers (cf [Sus84]), thus proving it in full generality according to the
rigidity theorem (Rig1).

But still, the idea of Suslin continued to evolve in the following variants:

(Rig2) Gillet-Thomason, [GT84].– Let k be a separably closed field, R be a strictly
henselian regular k-algebra of geometrical type1, and n be an integer in-
vertible in k. Then:

K∗(k;Z/nZ)
∼−→ K∗(R;Z/nZ).

One deduces that for any smooth k-scheme X, the sheaf on Xét associated
with K∗(−,Z/nZ) is constant, isomorphic to K∗(k,Z/nZ).

(Rig3) Gabber, [Gab92].– Let R be an henselian local ring with residue field k and
assume n is an integer invertible in R. Then:

K∗(k;Z/nZ)
∼−→ K∗(R;Z/nZ).

Remarque 1.1. All these results make use of transfers and homotopy invariance in
K-theory to obtained that a certain action of finite correspondences onK∗(−;Z/nZ)
factors through the Jacobian of a smooth projective curve (or the generalized Ja-
cobian of a smooth curve). Then the main argument is that this action is trivial as

the Jacobian is divisible. According to Levine, this principle is first due to Rŏitman
to prove his celebrated result on torsion 0-cycles ([Rŏi80]).

These results evolved in the theory of homotopy invariant sheaves with transfers
by Voevodsky: the conclusion of the first and second points is valid for any such
sheaf F , provided it is a sheaf for the étale topology and it is annihilated by n.

1.2. Let us prepare the statement of the final form of the rigidity theorems.This
is an elaboration of (Rig2) above applied to the case of sheaves as in the preceding
paragraph.

Put R = Z/nZ. We fix a perfect field k of finite cohomological dimension and
denote by két (resp. Sm/k)ét the small étale (resp. smooth-étale) site of k.

The natural inclusion ρ : két → Sm/k)ét induces an adjunction between, the
respective categories of sheaves of R-modules:

ρ] : Sh(két, R) � Sh(Sm/k)ét, R) : ρ∗ (1.2.a)

– ρ∗ is just the restriction functor. It is a basic fact that ρ! is a fully faithful and
exact functor (comparison between small and big sites). This adjunction can be
extended so that we can replace sheaves on the right by sheaves with transfers.

Theorem 1.3 (Voevodsky, [VSF00] Chap. 5, Prop. 3.3.3). Given the above nota-
tions, the induced:

L ρ] : D(két, R) � D(Shtr
ét(k,R))[W−1

A1 ] =: DMeff
ét (k,R) : R ρ∗

1i.e. the strictly local ring of a smooth scheme at some geometrical point.
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is an equivalence.

Remarque 1.4. Note in particular, that in this theorem is hidden the computation

in DMeff
ét (k,R):

Z/n(1) ' µn.

Thus one gets: DMeff
ét (k,R) = DMét(k,R) (stability with respect to inverse of the

Tate twist).

1.5. Let us now describe a generalization, as well as a variant, of this result obtained
recently by J. Ayoub.

Let R be a Z/nZ-algebra. We consider an excellent scheme S such that one of
the following conditions holds:

• S is a Q-scheme;
• n is odd.

It is clear that the adjunction (1.2.a) can be extended to the case where S replace
Spec(k).

According to Morel, one can introduce the étale A1-derived category:

D(Shét(S,R))[W−1
A1 ]

as well as its stabilization with respect to the Tate twist which we denote by
DAét(S,R) following Ayoub.

Then Ayoub proves:

Theorem 1.6 (Ayoub, [Ayo13]). Given the above notations, the induced adjunction

L ρ! : D(Sét, R) � DAét(S,R) : R ρ∗

is an equivalence.

The consequences of this theorem for the theory of étale motives are tremendous.
I will mention the principal ones in the followings.

Remarque 1.7. The main technical innovation of this theorem is the use of some
weak transfers in stable A1-homotopical sense – this is where we have to work
in a stable world. This is made possible by the work of Ayoub on the theory of
Voevodsky’s theory of cross functors and the theory of Grothendieck 6 operations.
One should also mention two earlier work on this variant of the rigidity theorem:

• S. Yagunov, [Yag04];
• O. Röndigs and P.A. Østvær, [RØ08],

which prove the analog of (Rig1) respectively for representable A1-cohomology and
the whole of the stable A1-homotopy category.

One should also point out that the proof of Ayoub relies on [RØ08].

2. Torsion étale motivic complexes

2.1. Fix: S a noetherian scheme, n an integer, R a Z/n-algebra, and put Λ =
Z[p−1, p ∧ n = 1].

Recall that given smooth S-schemes X and Y , a finite Λ-correspondence from X
to Y is a relative cycle on X ×S Y over X whose support is finite equidimensional
over X and which has good specializations2 at any point of X.3 They have various
good properties, and in particular a composition product.

2i.e. pullbacks
3The definition of “specialization” and “good specialization” of cycles is defined in the theory

of relative cycles by Suslin and Voevodsky; see [VSF00, chap. 2] and [CD09, section 8] for another
account.
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Then one defines the category Shtr
ét(S,R) of étale R-sheaves with transfers has the

étale R-sheaves over Sm/S equipped with an action of finite Λ-correspondences,
compatible with composition.

The first good property of these objects is the following:

Proposition 2.2. The following functor:

ρ] : Sh(Sét, R)→ Shét(S,R)
add transfers−−−−−−−−→ Shtr

ét(S,R),

left adjoint to the obvious restriction functor ρ∗ : F 7→ F |Xét
, is exact and fully

faithful.

In other words, étale R-sheaves coming from the small site of S uniquely admits
transfers.4

The second good property of Shtr
ét(S,R) is that it is well behaved, as its Nisnevich

analog: in particular, it is a Grothendieck abelian category with a closed monoidal
structure. Thus, one can define the category of étale effective motives:

Definition 2.3. One defines the category of étale effective R-motives as the A1-
localization of the derived category:

DMeff
ét (S,R) := D

(
Shtr

ét(S,R)
)
[W−1

A1 ].

The advantage of using transfers mainly reside in the following proposition:

Proposition 2.4. Assume n is invertible in S. Then the Tate motive

R(1) := Cone
(
Rtr

S ({1})→ Rtr
S (Gm)

)
is isomorphic to µn ⊗R where µn is the sheaf of n-th root of unity with its natural
transfers (cf Prop. 2.2).

The consequences of this simple proposition, obtained by an extension of the
computation of Suslin and Voevodsky, are surprisingly strong:

Corollaire 2.5. Assume n > 0:

(1) Cancellation.– DMeff
ét (S,R) ' DMét(S,R).

(2) Orientation and purity.– For any smooth projective morphism p : X → S
of dimension d, one has: p∗ ' p](−d)| − 2d].

(3) Localization.– For any closed immersion i with complementary open im-
mersion j, the following triangle is homotopy exact:

j!j
! → 1→ i∗i

∗.

The first point and the orientation properties are obvious from the preceding
proposition. Then the purity property comes from the fact the motive Rtr

S (X) is
strongly dualizable with an explicite duality with Rtr

S (X)(−d)[−2d] (construction
of Gysin morphisms and an argument of Ayoub). The localization property comes
from our first failed attempt to prove localization for integral Nisnevich motives: it
fundamentally relies on (1) and (2).

With these notations, and based on the previous corollary, we can deduce the
following theorem (see [CD13, Th. 4.5.5]):

Theorem 2.6. S noetherian, S′ = S[n−1]: the adjunction (ρ!, ρ
∗) of Proposition

2.2 induces an equivalence of categories:

L ρ] : D(S′ét, R) � DMeff
ét (S,R) ' DMét(S,R) : R ρ∗.

4Note this result is valid even in the case n = 0, Λ = Z.
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Note that Ayoub was also able to deduce this result, but only in the stable case,
and assuming that S is normal, excellent, universally japanese and the assumption
of 1.5 holds.

Our proof goes as follows: it is not difficult to deduce from Proposition 2.2 and
the homotopy invariance of étale cohomology (for any coefficients of D(S′ét, R)) that
L ρ! is fulyl faithful. Then the key point of is to show that the functor L ρ! commutes
with f∗ for a proper morphism f (one uses the proper base change theorem in the

context of D(S′ét, R) and DMeff
ét (S,R)).

2.7. For the first corollary of the previous theorem, we recall that a complex K of
sheaves with transfers over a base scheme S is said to be A1-local if its Nisnevich
cohomology on smooth S-schemes is homotopy invariant. Note this definition also
applies to sheaves, seen as complexes concentrated in degree 0.

The following corollary is in fact a generalization of the properties (Rig2) and
(Rig3) stated in the first section, as well as an extension of the theory of étale
homotopy invariant sheaves with transfers over a perfect field of Voevodsky:

Corollaire 2.8. Assume n is invertible on S.

(1) Let F be an étale R-sheaf with transfers over S. Then the following condi-
tions are equivalent:

(i) F is A1-local;
(ii) the canonical map ρ!ρ

∗(F ) → F is an isomorphism – i.e. F comes
from the small site of S.

(2) More generally, given any complex K of étale R-sheaves with transfers over
S, the following conditions are equivalent:

(i) K is A1-local;
(ii) for any integer i ∈ Z, the cohomology sheaves Hi(K) are A1-local;
(iii) the canonical map ρ!ρ

∗(K) → K is an isomorphism – i.e. K comes
from the small site of S.

2.9. The previous theorem also has an interesting repercussion on the notion of
traces in the context of SGA4, relative to a finite surjective morphism f : X → S.

In [SGA4, XVII, sec. 6.2], these traces where defined in the case where f is flat
or more generally ”pondéré”. Our assumption relies on the theory of relative cycles
of Suslin-Voveodsky: we say that the morphism f : X → S is Λ-universal if the
fundamental cycle associated with X is a relative Λ-cycle over S in the sense of
Suslin and Voevodsky (see [CD13, Par. 5.6.4], or [CD09, 8.1.48]).

Examples of such morphisms are:

• f is flat;
• the aim S of f is regular;
• the aim S of f is geometrically unibranch and has residue fields whose

exponential characteristic is invertible in Λ.

As a corollary of the prevous theorem we obtain:

Corollaire 2.10. Assume n is invertible on S.
Let f : X → S be a finite surjective and Λ-universal morphism. Then for any

complex K of R-sheaves on Sét, there exists a trace map:

Trf : f!f
∗(K)→ K

which is compatible with composition, base change, and satisfies the degree formula
(see [CD13, 5.6.8] for details).

Remarque 2.11. It is also possible to extend this notion of trace by replacing the
assumption finite by separated and quasi-finite as in [SGA4, XVII] (see [CD13,
Rem. 5.6.9]).
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3. h-motives

Introduction.

3.1. Recall that when R is a Q-algebra, given a base scheme S one has the following
equivalences proved in [CD09]:

DMét(S,R) ' DMNis(S,R) (S geom. unibranch), introduced by Voevodsky and later Cisinski-D.

' DMB(S,R) introduced by Cisinski-D.,

' DAét(S,R) introduced by Morel, Ayoub,

' DMh(S,R) (from the) original construction of Voevodsky.

The profusion of good models for rational mixes motives can be puzzling. On the
other hand, we know for sure that they are equivalent.

Moreover, in each of these cases, one can derive the full formalism of Grothendieck
6 operations, and using the torsion case described earlier, one can extend this to
the integral case for:

• DMét(−,Z), but one has to restrict to excellent geometrically unibranch
schemes;
• DAét(−,Z[1/2]), this is done by Ayoub as a corollary of its rigidity theorem:

see [Ayo13, Sec. 7, 8].

However, there is a model without defect, and this is the original one, introduced
by Voevodsky. This is what I want to describe finally.

3.2. Recall the definition of the h-topology on the category of S-schemes of finite
type: a covering for this topology is a morphism of S-schemes

p : W → X

such that p is a universal topological epimorphism – the topology on the target is
the image topology of that of W , and this property remains true after any base
change X ′ → X (eg.: proper surjective, faithfully flat).

Given any ring R, let Shh(S,R) be the category of h-sheaves of R-modules on

S ft
S . Stabilizing the original definition of Voevodsky, we define:

Definition 3.3 (Voevodsky). Given the notations above, we define the following
categories:

• the (big) category of effective h-motives DMeff
h (S,R) as the A1-localization

of the derived category of Shh(S,R);
• the (big) category of h-motives DMh(S,R) as the P1-stabilization of the

homotopy category DMeff
h (S,R);

• the category of étale motives DMh(S,R) as the full triangulated subcat-
egory of DMh(S,R) generated by the motives of the form Rh

S(X)(n) for
a smooth S-scheme X and an integer n ∈ Z and stable by infinite direct
sums;

• the category of constructible étale motives DMh,c(S,R) as the full triangu-
lated thick subcategory of DMh(S,R) generated by the motives of the form
Rh

S(X)(n) for a smooth S-scheme X and an integer n ∈ Z.

Remarque 3.4. Voevodsky has used the terminology ”of finite type”, and later
”geometrical”, for what we call here ”constructible”.

This very abstract construction still enjoys the following incredible properties:

Theorem 3.5. Let S be an excellent scheme and R a commutative ring.

(1) If R is a Q-algebra, DMh,c(S,R) is the category of rational, constructible,
mixed motives we all know (cf above).
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(2) Let n > 0 be an integer and let S′ = S[1/n] be the maximal open subscheme
of S on which n is invertible. If R is a Z/n-algebra then

DMh,c(S,R) ' Db
c(S
′, R),

the later category being the category of bounded complexes sheaves on Sét

with constructible cohomology of SGA4.

In the case where S is a (perfect) field, these results are due to Voevodsky.
One can deduce from this theorem that the category DMh(S,Z) satisfies all

the good properties of the categories appearing in (1) and (2): Grothendieck 6
operations for excellent schemes and the duality formalism (see [CD13, sec. 5.8]).

3.6. We finish this abstract with another construction that one can derive from
the previous theorem, the notion of l-completion of h-motives.

Fix a prime integer l. Given any étale integral motive K in DMh(S,Z), one can
define its homotopical l-completion:

K̂l = R lim←−
n>0

K/ln

where K/ln := K ⊗L
Z Z/lnZ.

One says that K is l-complete if the natural map K → K̂l is an isomorphism.
Then, we say that K is l-constructible if K/l is constructible.

One defines the l-adic completion DMh,c(S,Z)∧l of DMh,c(S,Z) as the full sub-
category made by the l-complete and l-constructible étale motives. According to
point (2) of the above theorem, one gets an equivalence of triangulated categories:

DMh,c(S,Z)∧l → Db
c(S,Zl)

where the right hand side category is the category of l-adic systems introduced by
Ekedhal when S is separated of finite type over a regular scheme of dimension less
than 1, and l is invertible on S.

Then one gets a natural realization functor:

DMh,c(S,Z)→ DMh,c(S,Z)∧l → Db
c(S,Zl),K 7→ K̂l

which is simply an l-completion functor. By looking at the rational part of this
functor, one deduces a rational realization functor which, according to proof of
Ayoub, is the dual of the one already constructed by Ivorra ([Ivo07]).

Now recall that the analog functor:

Dperf (Z−mod)→ Dperf (Zl−mod),K 7→ K̂l,

where perf means we are considering the full subcategories made by perfect com-
plexes on both sides, is conservative when restricted to the rational parts. Thus
one can reformulate the conservativity conjecture by the question:

Is the property of constructibility for integral étale motives analog to that of
perfect complexes for abelian groups ?
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[CD09] D.-C. Cisinski and F. Déglise. Triangulated categories of mixed motives. arXiv:0912.2110,

version 3, 2009.
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