
BIVARIANT THEORIES IN MOTIVIC STABLE HOMOTOPY

F. DÉGLISE

Abstract. I will explain how Grothendieck 6 functors formalism established
by Ayoub in stable motivic homotopy theory together with standard orientation
theory leads to a complete axiomatic in the style of bivariant cohomologies of
Fulton and Macpherson.

This involves an important property of Motivic spectra, called absolute purity,
which I will introduce and discuss in some extend. One of the main application
of our constructions is a generalized Grothendieck-Riemann-Roch formula which
admits many forms. I will give some new examples, such as a residual formula.
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I begin my talk with the following mathematical genealogy:

Riemann
Riemann inequality (1857)

Betti numbers (1871)
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duality, homology (1895)
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homology groups (1925)
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Grothendieck
K-theory, Grothendieck-Riemann-Roch (1958)

6 functors formalism (1957(ICM), 1966(RD), 1973(SGA4))
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Bloch-Ogus (1974) Fulton-Macpherson (1981)

The aim of my talk is to show how motivic homotopy theory of Morel and
Vœvodsky allows a synthesis of all the ideas appearing in this tree.
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In all this talk, schemes will be Noetherian finite dimensional. We fix a subcat-
egory S of these schemes stable by blow-up, base change and open subschemes.
Unless stated otherwise, schemes and morphisms are assumed to be in S .
Main examples:

• the category Reg of all regular schemes (i.e. its local rings are regular.)
• the category SmS of smooth S-schemes, for an arbitrary base scheme S.
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1. Absolute ring spectra: the associated 4 theories

1.1. Stable motivic homotopy and 6 functors.

1.1. Let S be a scheme.
Recall the A1-homotopy category over S, denoted by H•(S).

• Objects=pointed simplicial Nisnevich sheaves over SmS.
eg: X ∈ SmS, X+=sheaf represented by X with an added base point;
• Morphisms=morphisms of pointed simplicial sheaves up to weak A1-equivalence:
A1
X)+ → X+ is an A1-equivalence (Bousfiled localization)

This is a well behaved homotopy category (Quillen), with tensor product ∧.
The stable A1-homotopy category: obtained from H•(S) by inverting the sphere

P1 = S1 ∧Gm.
Triangulated monoidal category,

Σ∞ : H•(S)→ SH (S)

universal monoidal functor such that Σ∞(P1) := S0(1)[2] is ∧-invertible.
Objects: spectra, E = (E0, E1, ...) collection of simplicial sheaves equiped with
suspension maps1:

σn : P1 ∧ En → En+1

Associated cohomology: X a smooth S-scheme, (n,m) ∈ Z2:

En,m(X) = HomSH (Σ∞X+,E(n)[m]) =: [Σ∞X+,E(n)[m]]

=


lim−→
r→∞

HomH•((P1)r ∧X+, S
m−2n ∧ Er−n), m ≥ 2n,

lim−→
r→∞

HomH•(S
2n−m ∧ (P1)r ∧X+, Er−n), m ≤ 2n.

1.2. Here, we will use (Grothendieck) 6 functors formalism established by Ayoub
in [Ayo07], based on the theory of cross functors introduced by Vœvodsky. They
are pairs of adjoint functors:

(base change, direct image) exceptional functors closed monoidal
f ∗ : SH (S) � SH (T ) : f∗ p! : SH (Y ) � SH (X) : p! (∧,HomS)

f : T → S morphism p : Y → X s-morphism

Here s-morphism stands for quasi-projective originally, or separated morphisms of
finite type if one uses the extension obtained in [CD09].2 We will not list the
complete properties of these adjoints here. At least the following ones characterize
the first 4 functors:

• f ∗(Σ∞X+(m)) = Σ∞(X ×S T )+(m),
• p proper implies: p! = p∗,
• p étale implies: p! = p∗.

1a way of understanding En as P1 ∧ En+1).
2By using Deligne’s method to construct p! and Chow lemma for obtaining its properties.
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1.2. Absolute spectra. In order to use effectively this formalism, we introduce
the following definition:

Definition 1.3. An S -absolute (ring) spectrum is a collection of (ring) spectra
EX indexed by schemes X in S and a collection of isomorphisms of (ring) spectra:

τf : f ∗EX → EY .
satisfying the cocyle condition.

Exemple 1.4. There are numerous examples of absolute ring spectra:

(1) S ch-absolute: sphere spectrum S0.
(2) S ch-absolute: Vœvodsky’s algebraic cobordism MGL:

MGLS := (Th(γ1), . . . ,Th(γn), . . .)

where γn is the tautological vector bundle over BGLn abd Th means the
Thom space. For X smooth over a field of exponential characteristic p,

MGL2n,n
k (S)[1/p] = Ωn(S)[1/p].

(3) Reg-absolute: Over a regular scheme S, Quillen’s algebraic K-theory is
represented by

KGLS := (Z×Gr,Z×Gr, ...)
sequence made of Z-self products of infinite Grassmanians at each degree.3

X regular, (n,m) integers:

KGLn,m
S (X) = Km−2n(X).

(4) Let S be any scheme and Λ ⊂ Q any ring. In general, Vœvodsky defined
the Eilenberg-MacLane motivic ring spectrum HΛS representing motivic
cohomology over S: for X smooth over S,
• S = Spec(k), k perfect field, HΛn,m

S (X) = CHm(X, 2m− n) (Bloch’s
Higher Chow groups),
• S regular scheme, HQn,m

S (X) = GrγmK2n−m(X)Q (Cisinski, D. in the
unequal characteristic case, [CD09, 16.1.7])

It was conjectured by Vœvodsky that the collection HΛS is an absolute
ring spectrum:

Conjecture (Vœvodsky, [Voe98], Conj. 17). For any morphism f , the
natural map: f ∗HΛS → HΛT is an isomorphism.

This conjecture has been proved by Cisinski, D. when T , S are geomet-
rically unibranch and Λ = Q ([CD09, 16.1.7]).

Finally, following Riou, we will denote by HB the absolute ring spectrum
corresponding to Beilinson’s construction of rational motivic cohomology.

3To enlighten: the Z × − is there because K-theory is representable by an H-space; it is the
same simplicial shea at each degree because algebraic K-theory is P1-periodic (Bott periodicity).
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(5) Reg-absolute: Over a regular scheme S, by the recent work of Schlicht-
ing and Tripathi [ST13], hermitian K-theory (Karoubi (1973) for affine
schemes, Schlichting (2000) for general schemes, is representable by a ring
spectrum

KOS = (Z×GrO,Z×GrO, ...)
where GrO is the infinite orthogonal Grassmanian.

1.3. Beyond cohomology.

Definition 1.5. Let E be an S -absolute spectrum. Then for any s-morphism
f : X → S in S , and any integers (n,m), we define:

Cohomology En,m(X) = [(S0,EX(m)[n]]

Borel-Moore homology EBMn,m(X/S) = [(S0, p!ES(m)[n]]

Cohomology with compact support En,mc (X/S) = [(S0, p!EX(m)[n]]

Homology En,m(X/S) = [(S0, p!p
!E(−m)[−n]]

We will say BM-homology (resp. c-cohomology) for Borel-Moore homology (resp.
cohomology with compact support).

1.6. These theories enjoy a lot of properties. In fact, they satisfy (an extension of)
Fulton-Macpherson bivariant formalism. We will list only the principal properties.

• Comparison maps.– there exist comparison maps:

νX/S : En,mc (X/S)→ En,m(X),

νBMX/S : En,m(X/S)→ EBMn,m(X/S)

which are isomorphisms whenever X/S is proper (because of 1.2).
• Variance.– From the adjunctions and the properties listed in 1.2, we get:

En,m(X) contravariant in X
EBMn,m(X/S) covariant in X/S wrt proper morphisms,

contravariant in X/S wrt étale morphisms,
contravariant in S (base change)

En,mc (X/S) contravariant in X/S wrt proper morphisms,
covariant in X/S wrt étale morphisms,
contravariant in S (base change)

En,m(X/S) covariant in X/S
contravariant in S (base change)

• Products.– assume E is an absolute ring spectrum. Then, besides the fact
cohomology has a ring structure, we get for example the following refined
product in the style of Fulton-Macpherson:

EBM∗∗ (Y/X)⊗ EBM∗∗ (X/S)→ EBM∗∗ (Y/S)
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The same thing works for cohomology with compact support but for ho-
mology, we only get an exterior product. It is worth to note a last product,
generalization of the cap-product:

E∗∗c (X/S)⊗ EBM∗∗ (X/S)→ E∗∗(X/S)

1.7. Link with Bloch-Ogus axioms.– in fact, the concept of (relative) Borel-Moore
homology hides another kind of cohomology. Let i : Z → S be a closed immersion.
Then:

EBMn,m(Z/X) = E−n,−mZ (X), cohomology of X with support in Z.

In fact, one gets by adjuntion: [S0, i!(EX)] = [i!(S
0),EX ].

But from the localization property in SH , we also get: i!(S
0) = Σ∞(X/X − Z).

It is worth to spell out the refined product in that case: T ⊂ Z ⊂ X,

E∗∗T (Z)⊗ E∗∗Z (X)→ E∗∗T (X).

2. Absolute purity and orientations

2.1. Absolute purity.

2.1. Absolute purity in étale cohomology:
Conjectured (Grothendieck, SGA5), proved partially (Thomason, 1984), proved

in general (Gabber, 2000).
In motivic stable homotopy, let i : Z → X be a regular closed immersion.

Deformation to the normal cone diagram (extensively used by Fulton):

Z
s1 //

� _
i ��

A1
Z� _

��

Z
s0oo

� _
s��

X
d1 //

��

DZX

��

NZX

��

d0oo

{1} // A1 {0}oo

where:

• Deformation space: DZX := BZ×{0}(A1
X) − BZX, difference of the indi-

cated blow-ups. It is flat over A1. DZZ = A1
Z .

• Normal bundle of Z in X: NZX=fiber of DZX over 0.

Note that, because of homotopy invariance: s∗0 = (p∗)−1 = s∗1 where p : A1
X → X.

Definition 2.2. Let E be an S -absolute (ring) spectrum.
For any regular closed immersion i as above, we say i is E-pure if the morphisms

E∗∗Z (X)
d∗1←− E∗∗A1

Z
(DZX)

d∗0−→ E∗∗Z (NZX)

are isomorphisms.
We say E is S -absolutely pure if any regular closed immersion i in S is E-pure.
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Exemple 2.3. (1) for any scheme S, any SmS-absolute ring spectrum is ab-
solutely pure according to the relative purity theorem of Morel-Voevodsky.

(2) KGL (resp. HQ) is Reg-absolutely pure (by Cisinski, D., [CD09, 13.6.1,
14.4.1], essentially an application of Quillen purity property of algebraic
K-theory).

(3) According to [NSØ09], MGL ⊗ Q = HB[b1, . . . , bn, . . .]. Thus MGL ⊗ Q
is Reg-absolutely pure.

(4) It seems that the method of proof of Cisinski-Deglise gives that KO is
Reg-absolutely pure.

In view of these examples, I think it is natural to expect the following:

Conjecture. (1) The absolute ring spectrum MGL is absolutely pure.
(2) The absolute ring spectrum S0 is absolutely pure.

2.2. Orientation.

2.4. There are many contributors to this theory in motivic stable homotopy,
mainly because it is obtained by analogy with the topological case. It would
be pointless to mention them all but certainly Morel-Voevodsky are the initiators
and Panin is a lead contributor.

We recall the main definition and steps: let P∞S be the pointed space obtained
by taking colimit of the tower:

P1
S → . . .→ PnS → . . .

Definition 2.5. An orientation of a ring spectrum E over S with unit ηS is a class
c ∈ E2,1(P∞S ) such that

• c|P0
S

= 0,

• c|P1
S

= ηS through the suspension isomorphism Ẽ2,1(P1
S) ' E0,0(S),

Similarly, an orientation of an absolute ring E spectrum is an orientation cS of
each ES stable by pullbacks induced by the structural isomorphisms τf .

Exemple 2.6. The examples (2)-(3) are all absolute oriented ring spectra.

2.7. Recall from [MV99] that P∞ = BGm, in particular, there is a map:

Pic(S) = H1
Nis(S,Gm)→ [S0,P∞S ]unst

which is an isomorphism whenever S is regular (in fact: semi-normal).
Thus an orientation immediately yields the first Chern classes:

c1 : Pic(S)→ [S0,P∞S ]unst
Σ∞−−→ [S0,Σ∞P∞S ]

(cS)∗−−−→ [S0,ES(1)[2]] = E2,1(S).

They satisfy all the expected properties and can be extended to a theory of higher
Chern classes.

However, one should be careful that c1 is not an isomorphism of groups in
general. Instead, one has:
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There exists a (commutative) formal group law F (x, y) with coefficients in
E∗∗(S):

F (x, y) = x+ y +
∑
i,j≥1

aSij.x
i, yj

(recall aij = aji of bidegree (2(i + j), i + j)) such that for any line bundles L,L′

over S,

c1(L⊗ L′) = F (c1(L), c1(L′)).

Note that this formula makes sense as c1(L) is nilpotent for any L (because we
restricted to Noetherian schemes).

Exemple 2.8. As in topology:

(1) for HB (or HZS), F (x, y) = x+ y: additive formal group law.
(2) for KGL, F (x, y) = x+y−β.xy: multiplicative formal group law (β=Bott

element).
(3) for MGLk[1/p], F (x, y) is the Lazard universal formal group law.

2.3. Riemann-Roch: change of orientation.

2.9. Let (E, c) and (F, d) be oriented ring spectra with respective associated formal
group law Fc and Fd. Let ϕ : E→ F be a morphism of ring spectra, which induces:

ϕ∗ : E∗∗ → F∗∗.

Recall:

F∗∗(P∞S ) ' F∗∗(S)[[d]]

Thus, one gets:

ϕ∗(c) = Φ(d)

for a power series Φ(t) with coefficients in F∗∗(S). On the other hand, ϕ∗(c), of
degree (2, 1), is an orientation of F. Thus, necessarily,

Φ(t) = t+ terms of deg. > 1.

By definition, we formally get the equality of power series in (x, y):

Fc(Φ(x),Φ(y)) = Φ(Fd(x, y))

Thus, Φ is a (strict) isomorphism of formal group law from Fc to Fd.
Note finally that in this context, we can uniquely associated with ϕ the Todd

class Tdϕ(E) of any virtual vector bundle E/S characterized by the relation:

ϕ∗(c1(L)) = Tdϕ(−L).d1(L).

Exemple 2.10. According to Riou, it is possible to lift the (higher) Chern char-
acter in a (iso)morphism of ring spectra:

cht : KGLQ → ⊕i∈ZHB(i)[2i].
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Thus corresponding power series Φ is an isomorphism from a multiplicative formal
group law to an additive formal group law. It is well known that such an isomor-
phism is unique. It is define by the usual exponential series. Thus we get bakc the
usual formula for the classical Todd class.

Remarque 2.11. As it is clear from the preceding discussion, the Todd class, and
later on the GRR-formula can be reduced to the effect of changing the orientation
of a ring spectrum.

3. Fundamental classes and duality

3.1. Main theorem.

3.1. Orientation theory yields a whole family of characteristic classes (first exam-
ple: Chern classes). Recall the Thom classes :

Let (E, c) be an oriented ring spectrum and E/S be a vector bundle of rank n,
with zero setion s, canonical projection p, P(E) is projectivization and P(E ⊕ 1)
is projective completion.

Then one computes:

E∗∗(Th(E)) := E∗∗S (E) ' E∗∗(P(E ⊕ 1))/E∗∗(P(E)).

Thus, E∗∗(Th(E)) is a free E∗∗(X)-module of rank 1. The Thom class,

t(E) =
n∑
i=0

p∗(ci(E)).cn−i ∈ E2n,n(P(E ⊕ 1))

where c = −c1(O(−1)), yields a well defined element t̄(E) of E2n,n(Th(E)) which
is a base of E∗∗(Th(E))/E∗∗(X).

Exemple 3.2. Let i : Z → X be an E-pure regular closed immersion of codimen-
sion c.

Then, using the notation of Definition 2.2, one defines the refined (or local)
fundamental class of i (or Z in X) as:

η̄i = d∗1(d∗0)−1(̄t(NZX)).

This is a base of the E∗∗(Z)-module E∗∗Z (X) – which is therefore free of rank 1.

In the following theorem as well as in the rest of this talk, S is assumed to be
either Reg or SmS in the applications.

Theorem 3.3. Let (E, c) be an S -absolutely pure oriented ring spectrum.
There exists a family of fundamental classes η̄f ∈ EBM∗∗ (X/S) indexed by lci

qp-morphisms f uniquely characterized by the following properties:

(1) If i : Z → X is a regular closed immersion in S , η̄i coincides with the
fundamental class in E∗∗Z (X) defined in the previous example.
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(2) if j : U → S is an open immersion, η̄j is the image of 1 by the isomorphism:

EBM0,0 (U/S) ' E0,0(U).

(3) for composable quasi-projective lci morphisms Y
g−→ X

f−→ S, one has:

η̄g · η̄f = η̄fg ∈ EBM∗∗ (Y/S).

(4) η̄f is stable by smooth base change.

(Indication). In fact, we use Ayoub’s purity result: given a smooth qp-projective
morphism f : X → S, with tangent bundle Tf ,

f ! ' Th(Tf )⊗ f ∗.

This implies:

EBM∗∗ (X/S) ' E∗∗(Th(−Tf ))
so that we can define η̄f as the preimage of the (inverse) Thom class t̄(−Tf ).
This gives a definition of fundamental classes in general using quasi-projectivity.
The stability by pullback is formal. Roughly, the independance on the chosen
factorization is proved by the unicity statement.

On the other hand, when f = p is the projection of projective bundle, η̄p is
uniquely defined by the relation:

η̄p′ . η̄δ = 1

where p′ : P ×X P → P , is (one of) the canonical projection and δ the diagonal
embedding of P/X.

The most important point in this theorem is the relation:

η̄T (Z). η̄Z(X) = η̄Z(X)

for regular closed immersions T ⊂ Z ⊂ X. This is proved using a double defor-
mation space to reduce to the analog property of Thom classes, which is obvious
by the Whitney sum formula. �

3.4. These classes enjoy the following properties:

• Excess intersection formula.– Given a cartesian square

X ′
p′ //

f

��

S ′

f

��
X

p // S

of squares in S such that p is qp and lci. Let ξ be the associated excess
intersection bundle, of rank e (this is 0 is the square is transversal). Then:

f ∗(η̄p) = ce(ξ). η̄p′ .
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• GRR formula.– Let (E, c) and (F, d) be absolutely pure oriented ring spec-
tra and ϕ : E→ F be a morphism of ring spectra. Let Tdϕ the associated
Todd class and ϕ∗ : EBM∗∗ → FBM∗∗ the induced natural transformation.

Let f : X → S be an lci qp-morphism with virtual tangent bundle τf ,
the generalized GRR-formula reads:

ϕ∗(η̄
E
f ) = Tdϕ(−τf ). η̄Ff . (3.4.a)

Remarque 3.5. According to a work in progress of A. Navarro, it is possible to ex-
tend this construction to singular schemes and to avoid the assumption of absolute
purity (this is not the case however for the duality results of the next section).

3.2. Duality.

3.6. Consider the assumptions of the preceding theorem. Let µ : ES ∧ ES → ES
be the multiplication of the ring spectrum ES.

By definition, the fundamental class of an lci qp-morphism f in S , say of
dimension d, is a morphism

S0(d)[2d]→ f !(ES).

It induces a well defined morphism:

η̃f : f ∗(ES)(d)[2d]
1∧η̄f−−−→ f ∗(ES) ∧ f !(ES)

(∗)−→ f !(ES ∧ ES)
µ−→ f !(ES).

where the pairing (∗) exists from the 6 functors formalism. A formal corollary of
the main theorem is the following result:

Corollaire 3.7. With the assumptions and notations above, the map η̃f is an
isomorphism.

3.8. This corollary as many applications, and in fact contains the most interesting
part of both Bloch-Ogus and Fulton-Macpherson formalisms.

• Classical duality : f lci and qp of relative dimension d, η̃f induces isomor-
phisms:

En,i(X)→ EBM2d−n,d−i(X/S), x 7→ x · η̄f ,
En,ic (X/S)→ E2d−n,d−i(X/S), x 7→ x ∩ η̄f .

Thus, when f is in addition proper, the 4 theories are isomorphic.
• Bloch-Ogus style duality : Consider a commutative diagram

Y
f //

��??????? X

p��~~~~~~~

S
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made of qp and lci morphism, X/S of dimension d. Then there is an
isomorphism:

EBMn,i (Y/X)→ EBMn−2d,i−d(Y/S), y 7→ y · η̄p
In particular, if f = i is a closed immersion and S = Spec(k), one recovers
the isomorphism of Bloch-Ogus:

Er,sY (X) ' EBM2d−r,d−s(X/S).

• Exceptional variance: according to the above duality, the four theories
aquire new variance as follows, where morphisms are assumed to belong in
S :

E∗∗(X) covariant in X wrt projective lci morphisms,
EBM∗∗ (X/S) contravariant in X/S wrt lci qp-morphisms,
E∗∗c (X/S) covariant in X/S wrt lci qp-morphisms,
E∗∗(X/S) contravariant in X/S wrt projective lci morphisms.

In each case, the functoriality morphism is homogenous of bidegree (−2d,−d).

3.9. Generalized Riemann-Roch formulas.– Let ϕ : E → F be a morphism of
absolutely pure ring spectra, each equiped with an orientation c and d. Then the
GRR-formula (3.4.a) induces an analogous formula for all the morphisms defined
in the previous paragraph:

• Applied to the Chern character cht : KGLQ → HB, and to the correspond-
ing cohomology theories, we get a higher GRR-formula in the style of Gillet
(which nevertheless was still unproved for arbitrary regular schemes).
• The case of BM-homology is a generalization of formulas of Fulton-Macpherson.

This is particularly relevant in the case of cht.

3.10. Residue maps.– Let i : Z → X be a closed immersion. A particular case of
duality is:

En,m(Z)→ En+2c,m+c
Z (X), z 7→ η̄i .z

is an isomorphism. Applied to the boundary of the localization long exact se-
quence:

En−1,m(X − Z)→ En,mZ (X)

we get a canonical residue map:

∂EX,Z : En,m(X − Z)→ En−2c+1,m−c(Z).

Exemple 3.11. (1) when E represents De Rham cohomology (in characteris-
tic 0), X is a regular proper curve and Z a point, this residue map coincide
with Tate residue of differential forms (thus with Leray residues).

(2) When A is a DVR, X = Spec(A), Z the closed point, E = HB (or E =
HZk), and n = m, this map coincide with Milnor residue symbols in Milnor
K-theory.
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It is worth to mention that there is GRR-formula for this residue. Let us state
it in the case of the usual Chern character:

Proposition 3.12. Consider a closed immersion Z → X of regular schemes,
and let c be its codimension. Let NZX be the normal bundle of Z in X and put
U = X − Z.

Then the following diagram is commutative:

Kr(U)
∂X,Z //

chU
r,n

��

Kr−1(Z)∑
i+j=n−c Tdi(−NZX). chZ

r−1,j��

H2n−r,n
B (U)

∂X,Z // H
2(n−c)−r+1,n−c
B (U)

Exemple 3.13. (case r = 1) Then one gets an explicit description of the residue
morphism for K-theory, when X = Spec(A) and Z = Spec(A/I), A and A/I being
regular rings.

Indeed, one knows that K1(AI) = GL(AI)
ab, the abelianization of the group of

invertible matrices of arbitrary dimensions. Assume we are given an endomorphism
u : Ar → Ar such that u⊗AAI is an automorphism of ArI . We will denote by [u] the
class of this isomorphism is K1(A). By assumption, u is a monomorphism whose
cokernel if supported on I. We denote by [coKer(u)] the class of the corresponding
(finitely presented) A/I-module in K0(A/I). With these notations, one has the
following formula:

∂X,Z([u]) = [coKer(u)].

Assume further that n = c = 1. Recall that the Chern component ch1,1 :

K1(A)→ H1,1
B (A) = A× ⊗Q sends any matrix of GL(A) to its determinant.

Assume Z is connected. By assumption, I = (π) for a prime divisor π: AI is
a discrete valuation ring. We let vπ denote its valuation. Then, giving the above
notations, the residual Riemann-Roch formula lands in H0,0

B (Z) = Q and reads:

vπ
(

det(u)
)

= rkA/I
(
[coKer(u)]

)
.

Note that in fact, it is an integral formula as all the members are integers.

References

[Ayo07] J. Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents
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