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Abstract. We build an analogue of the Chern character replacing al-
gebaric K-theory by hermitian K-theory, and motivic cohomology by
the plus and minus parts of the rational sphere spectrum. We deduces
that the rational sphere spectrum satisfies absolute purity and several
interesting consequences.
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Introduction. The absolue purity conjecture, stated for étale of Grothen-
dieck torsion sheaves and by extension for `-adic sheaves, has been a difficult
problem since its formulation by Grothendieck in the mid-sixties – published
lately in 1977, [Gro77]. For some time, only the case of one dimensional
regular schemes was known thanks to Deligne, when Thomason first solved
the case of `-adic sheaves ([Tho84]), whose proof was later extended by
Gabber to the general case (see [Fuj02]). An utlimate proof was found by
Gabber, using a refinement of De Jong resolution of singularities, published
in [ILO14, exp. XVI]/

The importance of this conjecture stands from its applications. First,
it allows to show that constructibility (of complexes of étale sheaves) is
stable under the direct image functor f∗ (for f of finite type between quasi-
excellent schemes). One deduces that constructibility is stable under the six
operations (under very general assumptions). Then one obtains the so-called
Grothendieck-Verdier duality for constructible complexes over schemes S
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with a dimension function.1 This last point implies the existence of the
(auto-dual) perverse t-structure over suitable base schemes, extending the
fundamental work of [BBD82] (see [ILO14]).

For triangulated mixed motives, modeled on the previous étale setting
by Beilinson, this conjecture was implicit in the expected property. It was
first formulated and proved in the rational case by Cisinski and the first
named author in [CD09]. Later the absolute purity property was explic-
itly highlighted in [CD15, Appendix], and proved for integral étale motives
in [Ayo14] and [CD15]. It became apparent that this important property
should hold in greater generality, and philosophically be an addition to the
six functors formalism. Thus, it was conjectured in [Dég19] that this prop-
erty, on the model of the algebraic K-theory spectrum, should hold for the
algebraic cobordism spectrum and the sphere spectrum of Morel and Vo-
evodsky’s motivic homotopy theory.

The aim of this note is to prove the absolute purity conjecture for the
rational sphere spectrum. Recall that rationally, the sphere spectrum splits
into two parts, the plus and minus part. It was established in [CD09]
that the plus-part agree with the rational motivic cohomology spectrum,
and meanwhile satisfies the absolute purity property. We prove the general
case by using a strategy similar to that of [CD09], except that one replaces
Quillen’s algebraic K-theory by hermitian K-theory, mainly due to Karoubi,
Hornbostel and Schlichting. Indeed, thanks to work of the later, this later
K-theory has all the necessary property — notably the so-called ”dévissage”.
That being said, the crucial ingredient of our proof is to find an appropri-
ate analogue of the Chern character for hermitian K-theory over a suitable
base scheme S: noetherian, finite dimensional, with an ample family of line
bundles and defined over Z[1/2] (see our conventions). We call it the Borel
character/isomorphism. Its formulation allows to compute the ration her-
mitian K-theory spectrum KQQ with the plus part and minus part of the
rational sphere spectrum QS+ and QS−, which plays the role of the mo-
tivic cohomology spectrum. With these notations, the Borel character is an
isomorphism of the ring spectra:

bo : KQQ →
⊕
m∈Z

QS+(2m)[4m]⊕
⊕
m∈Z

QS−(4m)[8m]

(see Definition 2.11). Our construction uses in an essential way previous
works of Ananyevskiy [Ana16] and Ananyevskiy, Levine, Panin [ALP17].
Note the Borel character will be studied further in [DFKJ]. The absolute
purity conjecture for the rational sphere spectrum is then deduced from the
analogous property established for hermitian K-theory: see Theorem 3.2

1Most notably, the existence of a dualizing complex DS over S such that DS =
Hom(−,DS) is an auto-equivalence of categories. The functor DS then transforms f∗
(resp. f∗) into f! (resp. f !).
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and its proof. An interesting application is the existence of a well-defined
product for rational Chow-Witt groups of a regular base Z[|1/2]-scheme.

A very noticeable consequence of the Borel isomorphism is that every ra-
tional spectrum, over arbitrary bases, is Sp-oriented in the sense of Panin
and Walter ([PW10]). This is the A1-homotopy analogue of the well-known
fact every rational spectrum in topology is oriented. Note that in A1-
homotopy, there exists rational ring spectra that are non orientable in the
classical sense (say: admits Chern classes): Chow-Witt groups and hermit-
ian K-theory, rationally, already provide examples over fields with non-trivial
Grothendieck-Witt groups.

Organization of the paper. . The paper is divived in three sections.
In Section 1, we give some recall on ring spectra such as periodicity and
representability of hermitian K-theory and Balmer’s higher Witt groups (for
regular schemes). In Section 2, we construct the Borel isomorphism and
deduces that every rational spectrum is Sp-orientable. In Section 3, we
establish the absolute purity of the rational sphere spectrum and draw some
consequences.

Notations. Schemes are noetherian finite dimensional, admits an ample
family of line bundles (this is to use Schlichting results in [Sch10]) and are
defined over Z[1/2].

1. Recall on hermitian K-theory and higher Witt groups

See the reminder given by Jean in [DFKJ, Section 1].

Definition 1.1. We will denote by KQS the motivic ring spectrum repre-
senting hermitian K-theory over S: see [PW10].

We need the following properties:

(GW1) Given any map f : T → S, f∗KQS = KQT . In other words, KQ is
an absolute ring spectrum. This follows from the geometric model of
hermitian K-theory using quaternionic Grassmanians (from [PW10,
Th. 1.2]).

(GW2) For any regular scheme S, and any closed subscheme Z ⊂ S, such
that S − Z one has an isomorphism:

(1.1.a) KQn,i(S/S − Z) = GW
[i]
2i−n(S on Z)

where the right-hand side is Schlichting’s higher Grothendieck-Witt
groups: here we mean the (2i − n)-th homotopy group of the spec-
trum GWn(AS on Z,OS) of [Sch10, Def. 8 of Section 10]. In the

followings, we will simply denote this spectrum by GW [n](S on Z).
This follows from [PW10, (1.2)].

Remark 1.2. We the twisting notation introduced for example in [DJK18],

one can reformulate (1.1.a) as: KQn(S/S − Z, 〈i〉) = GW
[i]
−n(S on Z).
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Recall the following folklore result (see [GS09]).

Proposition 1.3. Let E be a motivic ring spectrum over S. Consider a pair
of integers (n, i) ∈ Z2. Then the following conditions are equivalent:

(1) There exists an element ρ ∈ En,i(S), invertible for the cup-product
on E∗∗.

(2) There exists an isomorphism: ρ̃ : E(i)[n]→ E.

Definition 1.4. A pair (E, ρ) satisfying the equivalent conditions of the
above proposition will be called an (n, i)-periodic ring spectrum over S.

An absolute (n, i)-periodic ring spectrum is an (n, i)-periodic ring spec-
trum over Spec(Z).

Proposition 1.5. There exists a family of elements ρS ∈ KQ8,4(S) indexed
by schemes, stable under pullback, such that (KQS , ρS) is (8, 4)-periodic.

This follows from the construction of the spectrum KQS . The element
ρS can be defined using [Sch10, Prop. 7], which implies that there exists a
canonical isomorphism of spectra:

GW [0](S) ' GW [4](S).

Therefore using (GW1), one gets an isomorphism: ψS : KQ0,0(S)
∼−→ KQ8,4(S)

and we can put ρS = ψS(1).
Following [Ana16], we introduce the following η-periodic spectra.

Definition 1.6 (Ananyevskiy). Let η : 1S → 1S(−1)[−1] be the (desus-
pended) Hopf map. We define the η-periodized sphere spectrum 1S [η−1]
as:

1S [η−1] = hocolim
(
1S

η−→ 1S(−1)[−1]
η(−1)[−1]−−−−−−→ 1S(−2)[−2]

η(−2)[−2]−−−−−−→ . . .
)
.

Given any spectrum E, we put: E = E[η−1].
We put KWS = KQS [η−1]. This defines an absolute ring spectrum.

In other words, (KWS , η) is (1, 1)-periodic. It is actually the (1, 1)-
periodization of KQS . Note also that the element ρS ∈ KQ8,4(S) induces
an element still denoted by ρS ∈ KW8,4(S), and the above definition shows
that (KWS , ρS) is (8, 4)-periodic.

From theorem 6.5 of [Ana16] (extended to regular schemes instead of
smooth varieties; I believe this is formal), one gets:

Theorem 1.7 (Ananyevskiy). For any regular scheme S, there exists an
isomorphism:

KWn,i(S) 'W [n−i](S)

where the right-hand side is Balmer’s higher Witt groups.

This isomorphism is contravariantly functorial in S, and induces an iso-
morphism of bigraded rings.

Remark 1.8. Of course, KQ and KW represents the A1-invariant version of
higher Grothendieck-Witt and higher Witt groups respectively.
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2. Rational Borel isomorphism

2.1. As KW is η-periodic, the unit map 1S → KWS induces a unique
morphism:

2.2. We fix an arbitrary base scheme S.
The symmetry involution permuting the factors Gm ⊗ Gm induces an

involution ε : 1S → 1S . We then define two complementary projectors on
1S [1/2]:

e+ =
1− ε

2
, e− =

1 + ε

2
,

and this defines Morel’s decomposition: 1S [1/2] = 1S+ ⊕ 1S−. More gener-
ally, given any spectrum E over S, we get a canonical decomposition:

E[1/2] = E+ ⊕ E−
such that ε acts by +1 (resp. −1) on E+ (resp. E−).

Recall from Morel’s computation that one has: η = εη. In particular, we
get:

1S [1/2, η−1] = 1S−.

In view of Definition 1.6, we then deduce:

KQ− ' KW[1/2].

Note in particular that KW− = KW[1/2].
Recall that (KWS , ρs) is (8, 4)-periodic. One deduces a canonical map:⊕

m∈Z
1S(4m)[8m]

∑
m ρmS−−−−−→ KWS .

Taking the rational parts and projecting this map to the −-part, we finally
obtain a canonical map, uniquely determined by ρS :

ψS :
⊕
m∈Z

QS−(4m)[8m]

∑
m ρmS−−−−−→ KWS,Q−.

Note that by construction, the maps ψS are compatible with pullbacks in
S. The following result is a corollary of a result of [ALP17, Cor. 5].

Theorem 2.3. For any scheme S (in particular S is a Z[1/2]-schemes), the
map ψS is an isomorphism.

Proof. Using the localization property and the continuity property of SH,
it is sufficient to prove that for all point x ∈ S, ix : Specκ(x) → S being
the obvious immersion, the map i∗x(ψS) is an isomorphism. By compatiblity
with base change, we are reduced to the map ψx over the field κ(x), for
which we apply [ALP17, Cor. 5]. �

Definition 2.4. We denote by boS,− the inverse of ψS . It is a morphism of
ring spectrum.

A remarkable corollary:
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Corollary 2.5. For any scheme S, any rational ring spectrum over S admits
a canonical Sp-oriented. Indeed, 1Q,S is the universal Sp-orientable ring
spectrum over S. In particular, the Thom space functor factorises through
Deligne’s Picard functor as follows:

K(S)
ThS,Q //

(det,rk)
��

SH(S)⊗

Pic(S)
Th′S,Q

66

In particular, the rational stable Thom space of a vector bundle depends only
on its determinant and its rank.

This follows from the fact KQ is Sp-oriented
One deduces the following result.

Corollary 2.6. Let E be an arbitrary rational ring spectrum E over S. For
integer (n, i) ∈ Z2, a S-scheme X with structural map p (resp. p separated
of finite type), and a line bundle L over X, one puts:

En,r(X,L) = HomSH(S)(1X , p
∗E(r)[n]⊗ ThS(L)),

resp. En,r(X/S,L) = HomSH(S)(1X(r)[n]⊗ ThS(L), p!E).

Then the following assertions hold:

• For any smoothyfiable morphism f : X → S, there exists a funda-
mental class ηf ∈ En, r(X/S, detLf ) satisfying compatribility with
composition and excess intersection formula.
• Assume E is absolutely pure and consider a smoothyfiable morphism
f : X → S between regular schemes, with cotangent complex Lf .
Then the following map:

En,r(X,L)→ En,r(X/S, det(Lf )− L), x 7→ x.ηf

is an isomorphism.

2.7. Let again S be an arbitrary scheme. Recall from [RØ16, Th. 3.4] that
one has a canonical distinguished triangle:

KQS(1)[1]
η−→ KQS

f−→ KGLS → KQS(1)[2]

where KGL is the spectrum representing the homotopy invariant K-theory
over S and f the hyperbolic map.

As η+ = 0 and KGLS− = 0, we immediately deduces:

Proposition 2.8. One has a split exact sequence in SH(S):

0→ KQS+
f−→ KGLS → KQS+(1)[2]→ 0.

In other words, KGLS ' KQS+ ⊕KQS+(1)[2].
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Recall from Riou [Rio10, CD09] that the classical Chern character corre-
sponds to an isomorphism of the following form in SH(S):

ch : KGLS,Q →
⊕
m∈Z

QS+(m)[2m]

where QS+ is identified with either the rational motivic Eilenberg-MacLane
spectrum (equivalently: the universal orientable ring spectrum).

Proposition 2.9. The composition

KQS,Q+
f−→ KGLQ,S

ch−→
⊕
m∈Z

QS+(m)[2m]

induces an isomorphism:

KQS,Q+

boS,+−−−→
⊕
m∈Z

QS+(2m)[4m].

Proof. According to [Sch10], there is an isomorphism GW [0] ' GW [2]
ε where

ε consists in taking the opposite duality. In particular, we get an isomor-
phism of functors GW [0] ' GW [4] and, using the isomorphism (1.1.a),

one deduces there is an element σS ∈ KQ4,2
+ (S) such that (KQ+, σS) is

(4, 2)-periodic. By construction, one has σ2
S = ρS and one can check that

f(σS) = β2. This finishes the proof. �

2.10. In particular, one gets a canonical isomorphism:
(2.10.a)

KQQ ' KQQ+⊕KQQ−
boS,+⊕boS,−−−−−−−−−−→

⊕
m∈Z

QS+(2m)[4m]⊕
⊕
m∈Z

QS−(4m)[8m],

which, from the above constructions, is in fact an isomorphism of ring spec-
tra.

Definition 2.11. We call the above isomorphism the Borel character and
denote it by

bo : KQQ →
⊕
m∈Z

QS+(2m)[4m]⊕
⊕
m∈Z

QS−(4m)[8m].

To my opinion, it would be better to write the right-hand term in terms
of MW-motivic cohomology and ordinary motivic cohomology. Answer: the
”abstract” Borel character does not involve MW-motivic cohomology as it
is defined over an arbitrary base, and MW-motivic cohomology only over a
perfect field. But see the applications!

Remark 2.12. It is possible to give to the above Borel character a form which
is closer to the classical Chern character, if we think of its target in terms
of motivic and MW-motivic cohomology. We refer the reader to our future
work [DFKJ] for more details.
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3. Absolute purity

3.1. Let E = (ES) be an absolute spectrum. Recall one says that E is
absolutely pure ([DJK18, 4.3.11]) if for any quasi-projective lci morphism
f : Y → X with cotangent complex Lf , the purity transformation:

pf : EX ⊗ ThX(〈Lf 〉)→ f !(EX)

is an isomorphism.

Theorem 3.2. The absolute spectrum KQ is absolutely pure.

Proof. One uses the method of proof of [CD09, Th. 13.6.3, Rem. 13.7.5].
One needs only to consider closed immersions i : Z → X between regu-
lar schemes. Now one uses the isomorphism (1.1.a) so that we can apply
Schlichting theory. Note the isomorphism (1.1.a) uses the devissage theorem
[Sch10, Th. 14].

From [Sch17, 9.19], and the invariance under dg-equivalences of the Gro-
thendieck-Witt groups associated with dg-categories with dualities, one de-
duces an isomorphism:

p′f : GW (X on Z) ' GW (Z,det(−Ni)).

By definition of Thom spaces, and from the localization sequence in Her-
mitian K-theory, one deduces that the identification (1.1.a) extended to the
following twisted version:

t : KQn(X, v) ' GW
[r]
−n(X,det v)

for any virtual bundle v of rank r over a regular scheme X. In terms of the

bivariant theory, KQn(X/S, v) ' GW
[r]
n (X,det(v)). Then one identifies p′f

and pf via the preceding isomorphism. This is easy: as each isomorphisms
is functorial with respect to transverse base change, by deformation to the
normal cone one reduces to the case of the zero section of a vector bundle.
This is now just a normalization condition that one has to impose on t. �

Corollary 3.3. The following absolute spectra are absolutely pure:

• the Witt ring spectrum KW;
• the rational sphere spectrum 1Q;
• any strongly dualizable rational ring spectrum;
• any cellular rational spectrum in the sense of Dugger-Isaksen (see

[DI05, 2.10])

The case of KW is clear from definition 1.6, as i∗ ⊗ Th(−Ni) and i!

commutes with homotopy colimits (for i! we apply the localization property).
The case of the spectra QS+ and QS− follows from the Borel isomorphism
(2.10.a), which shows in particular that both are direct factors of KQS . The
other cases follow by devissage.

Example 3.4. We can then apply Corollary 2.6 to any ring spectrum of the
preceding example to get duality results.
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Corollary 3.5. Let S be a regular scheme. Then for any integer n ≥ 0,
there exists an isomorphism:

H2n,n
A1 (X,Q) ' C̃H

n
(X)⊗Z Q

where the right hand-side is the Chow-Witt group of S with coefficients in
Q. As a consequence, Chow-Witt groups when restriced to regular schemes
admit products and Gysin maps with respect to projective morphisms.

This follows from the hyper-cohomology spectral sequence with respect to
the δ-homotopy t-structure. Gysin morphisms follow from the construction
of [DJK18].

Corollary 3.6. Let S be a regular scheme and X be an S-scheme essentially
of finite type. Then for any integer n ≥ 0, there exists an isomorphism:

HA1

2n,n(X/S,Q) ' C̃Hδ=n(X)⊗Z Q
where the right hand-side is the Chow-Witt group of S of quadratic cycles
sums of points x such that δ(x) = n, tensored with Q. As a consequence,
these groups admits Gysin maps with respect to smoothable lci morphisms
of S-schemes essentially of finite type.

This follows from the hyper-homology spectral sequence with respect to
the δ-homotopy t-structure.

Let S be regular base. It is now possible to use Calmès-Fasel method
to build MW-correspondences on smooth schemes over S, and to build the
triangulated category of Milnor-Witt motives over S. Then one should be

able to use the proof of [CD09, 16.2.13] prove that D̃M(S,Q) is equivalent
so SH(S)Q.
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Bois–Marie 1965–66 (SGA 5). 1

[GS09] David Gepner and Victor Snaith, On the motivic spectra representing algebraic
cobordism and algebraic K-theory, Doc. Math. 14 (2009), 359–396. MR 2540697
4

[ILO14] Luc Illusie, Yves Laszlo, and Fabrice Orgogozo (eds.), Travaux de Gabber
sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents,
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[RØ16] Oliver Röndigs and Paul Arne Østvær, Slices of hermitian K-theory and Mil-
nor’s conjecture on quadratic forms, Geom. Topol. 20 (2016), no. 2, 1157–1212.
MR 3493102 6

[Sch10] Marco Schlichting, The Mayer-Vietoris principle for Grothendieck-Witt groups
of schemes, Invent. Math. 179 (2010), no. 2, 349–433. MR 2570120 3, 4, 7, 8

[Sch17] , Hermitian K-theory, derived equivalences and Karoubi’s fundamental
theorem, J. Pure Appl. Algebra 221 (2017), no. 7, 1729–1844. MR 3614976 8

[Tho84] R. W. Thomason, Absolute cohomological purity, Bull. Soc. Math. France 112
(1984), no. 3, 397–406. MR 794741 1
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