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1 Unramified sheaves of Sets

Let SmSm
k be the category of smooth k-schemes with smooth morphisms. We recall that Fk is the

category of fields extensions of k with finite transcendance degree. The aim of this section is to define
and study a class of presheaves that covers a large number of sheaves relevant to A1-homotopy.

Definition 1 Let S be a presheaf of sets on Smk (or SmSm
k ). We say that S is unramified if the

following three conditions hold :
(U0) For any X ∈ Smk with irreducible components Xα’s, α ∈ X(0). The map S(X)→

∏
α∈X(0) S(Xα)

is a bijection.
(U1) For any X ∈ Smk and any open subset U ⊂ X, if U is everywhere dense in X, then S(X)→

S(U) is injective.
(U2) For any X ∈ Smk, irreducible with function field F , S(X) →

⋂
x∈X(1) S(OX,x) is a bijection

(where the intersection is taken in S(F )).

Let us make a few remarks about this definition.
1. Since all the morphisms that happens in the definition are smooth, a presheaf of set on Smk

is unramified if and only if it is unramified as a presheaf of set on SmSm
k . We will make use of

this fact later.
2. Unramified presheaves are sheaves for the Zariski topology. Indeed, by (U0), we can assume

our scheme is irreducible, then, for any open U , we have the formula S(U) ∼=
⋂

lim
x∈U(1)

S(OX,x),

and we can check that this formula defines a sheaf for the Zariski topology.

3. There is another description of such presheaves. The axiom (U2) can be replaced by the follo-
wing, which we call (U2’) : S is a sheaf for the Zariski topology and for any X ∈ Smk, for any
U open in X such that X \U is everywhere of codimension ≥ 2, then S(X)→ S(U) is an iso-
morphism. Indeed if S is unramified, it is enough to check this in the case of an irreducible X.
By (U1), S(X)→ S(U) is injective, by the assumption on U , U contains all the codimension
1 points of X, thus the composite S(X) ↪→ S(U) ∼=

⋂
x∈U(1) S(OX,x) =

⋂
x∈X(1) S(OX,x) is an

isomorphism, so the first map must be an isomorphism as well. Conversely, if a sheaf verifies
(U0) and (U1) and (U2’), it suffices to show that S(X) ↪→

⋂
x∈X(1) S(OX,x) is surjective.

Given a class < U, f > in
⋂
x∈X(1) S(OX,x) (which is a subset of S(F )), we can assume every

x ∈ X(1) is in U and we can lift < U, f > to an element in S(U) (because S is a sheaf), which
is isomorphic to S(X) by assumption.
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Remark If S is a sheaf of set in SmSm
k and K ∈ Fk, then one can pullback S to SmSm

K and call the
resulting sheaf the extension of S to K, moreover, if S is unramified, then its extension is unramified
as well (we can prove it using (U2’)). Beware that K might not be a perfect field anymore, so the
equivalences we will prove below will not hold for the extended sheaves.

Let us give an important example of unramified sheaves :

Proposition 1.1 If a sheaf S is strictly A1-local, then S is unramified.

Proof Consider the coniveau spectral sequence associated to the sheaf :

Ep,q1 =
⊕

x∈X(p)

Hp+q
x (X(x),S)⇒ Hp+q(X,S) .

We will admit that a strictly A1-invariant sheaf satisfies the following form of the purity theorem :
for any x ∈ X(p),

Hp+q
x (X(x),S) =

{
S−p(κ(x)) if p = q

0 if p 6= q
.

The key point here is that the coniveau spectral sequence is concentrated on the line q = 0. Hence
it degenerates at the E2 page and writing the start of the sequence gives an exact sequence

0→ S(X)→ S(K(X))→
⊕

x∈X(1)

H1
x(X(x),S)→ 0 .

That the sheaf satisfies (U1) can be seen by functoriality of the coniveau spectral sequence and of
the exact sequence above, which yields a diagram

0 S(X) S(K(X))

0 S(U) S(K(X))

Id

with exact rows.

For (U2), we need to compute the kernel S(K(X))→
⊕

x∈X(1) H1
x(X(x),S). But this kernel is

the intersection of the kernels S(K(X))→ H1
x(X(x),S). But since one has an exact sequence

0 = H0
x(X(x),S)→ S(X(x))→ S(X(x) \ {x})→ H1

x(X(x),S) .

But since x has codimension 1, S(X(x) \ {x}) = S(K(X)). So this kernel is S(X(x)) = S(OX,x). So
we find that S(X) =

⋂
x∈X(1)

S(OX,x) as expected. �

The goal of this section is to describe in a more convenient way unramified sheaves. Recall that a
functor Fk → Set is said to be continuous if S(F ) is the filtering colimit of the values of S at the
finite type subfields of F . We introduce the following objects :

Definition 2 Given the following data :
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(D1) A continuous functor S : Fk → Set.
(D2) For any F ∈ Fk, and for any discrete valuation v on F , a subset S(Ov) ⊂ S(F ).
We say such data constitutes an unramified FSm

k -datum if it is subject to the following axioms :
(A1) Let E ⊂ F be an extension of field in Fk, let v be a discrete valuation on E which restricts

to a discrete valuation w on F , such that the ramification index e(v/w) is 1. Then S(i) maps
S(Ow) in S(Ov).I f moreover κ(w) → κ(v) is an isomorphism, then the following square of
sets is cartesian :

S(Ow) S(Ov)

S(E) S(F ) .

(A2) Let X be smooth irreducible over k with function field F , then if x ∈ S(F ), x lies in all but
a finite number of subsets S(Oy) wher y ∈ X(1).

This definition is motivated by the following fact :

Proposition 1.2 The category of unramified FSm
k -data is equivalent to the category of unramified

sheaves of sets for the Nisnevich topology on SmSm
k .

Proof Let us first construct a functor from the category of unramified sheaves of sets on SmSm
k to

the category of unramified FSm
k -data. This functor is simply the restriction of a presheaf S to the

category of sheaves on Fk. Let S be an unramified sheaf of sets on SmSm
k . Continuity of the functor

comes directly from the definition of the evaluation of S on an essentially smooth scheme. For a
discrete valuation v on a field F , S(Ov) is a subset of S(F ), indeed, reduce first to the case where F
is finitely generated over k. Pick a smooth irreducible model X for Ov, Then S(Ov) is the colimit
over all opens of X containing v, this injects into S(F ) which is the colimit of all open subsets of
X. For a general F , we take the colimit over subextensions of F that are finitely generated.
Let us check (A1), assume first that E and F are both of finite type over k, then, in the situation
of (A1), the following diagram of essentially smooth k-algebras is commutative

Ow Ov

E F .
i

Thus by applying S, we find the first condition by functoriality of S. In the general case, F is the
colimit of its subfields of finite type over k, passing to the colimit in the previous diagram yields
the first part of (A1).
For the second part, assume that ī is an isomorphism. Since the ramification e(v/w) is 1 and
the residue extension is trivial hence separable, the map Spec(Ow) → Spec(Ov) is étale ([Sta19,
Lemma 09E7]). Since the residue extension is an isomorphism, the following square is a Nisnevich
distinguished square over Spec(Ow) :

Spec(F ) Spec(Ov)

Spec(E) Spec(Ow) .
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All elements of this square are essentially smooth k-scheme. By a standard reindexing theorem
([AM69], A.3.3), we can assume they are all the projective limit over a common projective system
I. Let us say the systems are respectively (Fλ), (Eλ), (Vλ), (Wλ) for Spec(E), Spec(F ), Spec(Ov),
Spec(Ow) respectively, and that the morphisms are all compatible with this system. Permanence
theorems for inverse limits ([GD66] 8.10.5 for open and closed immersions, fiber products and
isomorphisms and [GD67] 17.7.6 for étaleness) of morphisms show that for sufficiently large λ, the
following square of smooth k-scheme is a Nisnevich distinguished square as well :

Fλ Vλ

Eλ Wλ .

Then, since S is a Nisnevich sheaf by assumption, the following square is cartesian :

S(Wλ) S(Vλ)

S(Eλ) S(Fλ) .

Then, we can take the filtered colimit over the indices µ ≥ λ, filtered colimits preserve finite limits
hence the colimit square is cartesian as well, and said square is exactly

S(Ow) S(Ov)

S(E) S(F ) .

Let us check (A2) : let x ∈ S(F ). By definition, x comes from some x ∈ S(U) for some open U of
X. Then x is in all the S(OX,y) for y ∈ U (1). Since X is irreducible, there are only a finite number of
y ∈ X(1) that are not in U (1), thus (A2) is satisfied, and S|Fk

constitutes an unramified FSm
k -datum.

Now let us go in the other direction, and construct an unramified sheaf of sets on SmSm
k from

an unramified FSm
k -datum. Let S be such a data.

Let X ∈ Smk be irreducible with function field F . Define S(X) to be
⋂

x∈X(1)

S(OX,x). For a non-

irreducible X, extend this definition so that (U0) is satisfied. This defines S on objects. Let
f : Y → X be a smooth morphism between two smooth k-schemes of finite type. We can as-
sume X and Y are irreducible and that f is dominant. Let E and F be the function field of X
and Y respectively. Then, define S(f) : S(X) → S(Y ) as the restriction of S(f) : S(E) → S(F )
to the subset

⋂
x∈X(1) S(OX,x). We must show that this maps into

⋂
y∈X(1) S(OY,y). Since f is

smooth and dominant, if x ∈ X(1), then f−1(x) is a finite subset of codimension-1 points, and the
induced maps OX,f(y) → OY,y correspond to an unramified extension of discrete valuation rings. If
x ∈

⋂
x∈X(1)

OX,x, then x ∈
⋂

y∈Y (1)

OX,f(y), which is mapped in
⋂

y∈Y (1)

OY,y by (A1). Hence the map

is well-defined.

It remains to check that this is a sheaf for the Nisnevich topology, and that it is unramified. Let
us first show that this is a sheaf for the Nisnevich topology. We must show that S(∅) = {.} and
that, if (U, p : V → X) is an elementary Nisnevich covering, then, the following square is cartesian :
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S(X) S(V )

S(U) S(U ×X V ) .

For the first part, we didn’t say anything about the case of the empty set, so we might as well
define S(∅) to be a singleton. For the second part, let (U, p : V → X) be an elementary Nisnevich
covering. Consider a diagram

X

⋂
x∈X(1)

S(OX,x)
⋂

v∈V (1)

S(OV,v)

⋂
x∈U(1)

S(OU,x)
⋂

v∈(U×XV )(1)
S(OU×XV,v) .

p

We must define an unique morphism X →
⋂

x∈X(1)

S(OX,x) making the whole diagram commute. To

do so, we must show the morphism p : X →
⋂

x∈U(1)

S(OX,x) factors to
⋂

x∈X(1)

S(OX,x). Let x be in

X(1) \ U (1), and let us show that p(X) ⊂ S(OX,x). Since x is not in U , x is in Z = X \ U which is
isomorphic to V ×X Z with its reduced structure. Thus there is a point y ∈ V which is above x with
isomorphic residue fields. Let F ′ be the function field of V , and F the function field of X. Then
OV,y and OX,x are discrete valuation ring, the valuation of OV,y restricts to the valuation of OX,x
on F and is unramified because p is étale. Thus we can use (A1) to conclude that the following
square is cartesian :

S(OX,x) S(OV,y)

S(F ) S(F ′) .

Thus, by applying the cartesian property toX →
⋂

x∈U(1)

S(OX,x) ↪→ S(F ) and toX →
⋂

v∈V (1)

S(OV,v) ↪→

S(F ′), we can factor p through S(OX,x) as was to be shown. Doing so for every x ∈ X(1) that is not
in U (1), p factors through

⋂
x∈X(1)

S(OX,x), and the fact that we are dealing with monomorphisms

shows it factors uniquely. Hence, S defines a Nisnevich sheaf of sets.

By construction, it satisfies (U0). Let U be everywhere dense in X, we can once again assume X
is irreducible (so that U is just any nonempty open subset of X), then, the morphism S(X)→ S(U)
is

⋂
x∈X(1)

S(OX,x)→
⋂

x∈U(1)

S(OX,x) which certainly is injective. Finally, the very construction of S

is so that it satisfies (U2).
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Let us check that this yields an inverse to the restriction functor. The fact that restriction
followed by this composition is isomorphic to the identity is clear. Conversely, let S be an unramified
FSm
k -datum, and let S̃ be the datum obtained by the composition of the above construction followed

by restriction. Then, for F ∈ Fk, one has S̃(F ) = lim−→S̃(Fα) where Fα runs over the subfields of F of
same transcendence degree, smooth over k. For such field, we claim that S̃(Fα) = S(Fα). Indeed, If
Fα is of transcendence degree 0 over k, then Fα is also a smooth k-scheme and then S(Fα) = S̃(Fα),
if the transcendence degree is stricly positive, let X be smooth irreducible with function field Fα,
then by (A2) any element in S̃(Fα) is in all but a finite number of S̃(OX,x), but those are equal to
S(OX,x) by construction. Hence S̃(Fα) ⊂ S(Fα). By the same argument, one has S̃(Fα) ⊃ S(Fα).
�

We have given the data necessary to reconstruct an unramified sheaf of set on SmSm
k , the next

step is to add the data necessary to reconstruct an unramified sheaf of set on Smk.

Definition 3 An unramified Fk-datum is the data of an unramified FSm
k -datum, together with the

additional data
(D3) For any F ∈ Fk and any discrete valuation v, a specialization map sv : S(Ov)→ S(κ(v)).
such that the following axioms are satisfied :
(A3) (i) If i : E ⊂ F is an extension in Fk, v a discrete valuation on F that restricts to a

discrete valuation w on E. Then, S(i) maps S(Ow) in S(Ov) and we have a commutative
diagram :

S(Ow) S(Ov)

S(κ(w)) S(κ(v)) .

(ii) If i : E ⊂ F is an extension in Fk and v is a discrete valuation that restricts to 0 on E,
then S(i)(S(E)) ⊂ S(Ov) and if j : E ⊂ κ(v) is the induced extension, then we have a
commutative diagram :

S(E)

S(Ov) S(κ(v)) .

S(i)
S(j)

sv

(A4) (i) For any X local of dimension 2 essentially smooth over k, with closed point z ∈ X(2) and
for any y0 ∈ X(1) such that ȳ0 is also essentially smooth over k, then sy0 : S(Oy0) →
S(κ(y0)) maps

⋂
y∈X(1)

S(Oy) into S(Oȳ0,z).

(ii) The composition ⋂
y∈X(1)

S(Oy)→ S(Oȳ0,z)→ S(κ(z))

does not depend on y0.
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As previously, let us check that an unramified sheaf of set on Smk defines an unramified Fk-datum.
We already know it defines a FSm

k -datum. Let F ∈ Fk and v a valuation on F . We can define sv
by picking a smooth model. Once again we may assume F is of finite type. Let X be an irreducible
smooth k-scheme with function field F a point x of codimension 1 such that OX,x = Ov. Then the
closed subset Z = {x} is smooth over k on an open dense subset U , so we might assume it is smooth
as well, hence we can define S(Ov)→ S(κ(v)) by taking the colimit of the maps S(V )→ S(V ∩Z)
where V runs over the open subsets of X. Let us check that this data satifies (A3) and (A4). Let
us check (A3) first and let us keep the notation of (i). We have the following diagram of essentially
smooth k-schemes

Spec(Ov) Spec(Ow)

Spec(κ(v)) Spec(κ(w)) .

and we apply S to this diagram. Axiom (ii) is checked similarly.
Let us check (A4). The image of Oy0 in X is everywhere dense, hence we have S(X) ⊂ S(Oy0) by
(U1). Moreover, if we consider the following diagram :

κ(y0) Oy0

ȳ0 X ,

since κ(y0) is the function field of ȳ0 which is of dimension one, S(ȳ0) ⊂ S(κ(y0)) by (U1) again.
We have that the following diagram is commutative by applying S to the previous diagram :

S(X) S(Oy0)

S(ȳ0) S(κ(y0)) .

sy0

By (U2), S(X) =
⋂

y∈X(1)

S(Oy). Commutativity of the above diagram shows that
⋂

y∈X(1)

S(Oy) is

mapped in S(ȳ0) = S(Oȳ0,z). This shows the first part of (A4).
For the second part of (A4), the following diagram is commutative for all y0 such that ȳ0 is
essentially smooth over k :

ȳ0

Spec(κ(z)) X .

By definition, applying S gives

S(X) S(ȳ0)

S(κ(z))

sy0
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and S(X) =
⋂

y∈X(1)

S(Oy). Because it comes from the inclusion Spec(κ(z))→ X, the diagonal map

is independent from y0. This shows the second part of (A4).

We can now state and prove the main theorem :

Theorem 1.3 Given a Fk-datum S, there is a unique way to extend the unramified sheaf on SmSm
k

induced by the FSm
k -datum composing S such that for any F ∈ Fkdiscrete valuation ring Ov in F

with separable residue field, the map S(Ov)→ S(κ(v)) induced by the extended sheaf coincide with
the specialization map sv of S, and this extended sheaf is unramified.

Proof The functor is already defined on object, it remains to define it on map. We will first define
it in the case of closed immersions and then reduce to this case. To define it on closed immersion,
we procede by induction on the dimension on the closed immersion. Let us first define it on closed
immersion of codimension one. Let i : Y → X such an immersion. We may assume Y and X are
both irreducible. In the general case, we define s(i) as the product of the S(iα) where iα are the map
induced on the irreducible component, this reduction makes sense by (U0). Let y be the generic
point of Y , it is of codimension 1 in X by assumption. By (U2), to define s(i) : S(X) → S(Y ) in
a functorial way, we must have

S(X) S(Y )

S(OX,y) S(κ(y)) .

s(i)

sy

We thus have to check that for all z ∈ Y (1), sy maps S(X) in S(OY,z), since S(Y ) =
⋂

z∈Y (1)

S(OY,z),

this will define s(i) in a unique way.
Let z ∈ Y (1), then z has codimension 2 in X and we can apply (A4) to OX,z which is of dimension
2. It shows that S(OX,z) (which contains S(X)) is sent in S(Oȳ,z) = S(OY,z) as expected.
The next step is to define s(i) where i : Z → X is a closed immersion of codimension d. The key
point is the following lemma :

Lemma 1.4 Let i : Z → X a closed immersion of codimension d > 0. Assume that i factors as

Z
j1→ Y1

j2→ Y2 → · · · → Yd = X ,

such that each consecutive Yi is closed and smooth over X and the ji are closed immersions of
codimension 1. Then, the composition

S(X)
s(jd)→ · · · → S(Y2)

s(j2)→ S(Y1)
s(j1)→ Z

is independent of the factorization. This composition will be denoted s(i)

Proof There is nothing to prove if d = 1, so let us assume d ≥ 2. We can further assume that Z
is irreducible of generic point z. Since S is a sheaf, we can replace X by any neighborhood of z,
and even replace X by the local ring A = OX,z. Let us do such a reduction. In this case, the case
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d = 2 is exactly the one handled by (A4). In the general case, since A is regular of dimension d,
the sequence of closed immersion is of the form

Spec(A/(x1, . . . , xd))→ Spec(A/(x2, · · · , xd))→ · · · → Spec(A/(xd))→ Spec(A)

where (x1, . . . , xd) generate the maximal ideal m of A. Smoothness of each successive member of
the flag is equivalent ([GD67], 17.12.2) to the fact that (x1, . . . , xd) is a regular sequence in A. We
thus have to show that the composite

S(Spec(A/(x1, . . . , xd)))→ S(Spec(A/(x2, . . . , xd)))→ · · · → S(Spec(A/(xd)))→ S(Spec(A))

does not depend on the regular sequence (x1, . . . , xd). If (x′1, . . . , x
′
d) is another regular sequence,

then, since both reduce to a κ(z)-basis of m/m2, there exists M ∈ Gld(A) sending (x′1, . . . , x
′
d) to

(x1, . . . , xd). Multiplying x1 by any unit of A does not change the flag of subvariety associated to
the sequence, hence we may even assume that M ∈ Sld(A). It is known ([Knu91], VI, corollary
1.5.3) that the special linear group of a local ring is generated by elementary matrices.
By the case d = 2, we can freely permute xi and xi+1 in the regular sequences we are considering,
hence, we can freely permute all the elements of the regular sequences we are working with without
changing the composition. Hence, after permuting the elements of the sequences accordingly, it
remains to show that the regular sequences (x1, . . . , xd) and (x1 + ax2, x2, . . . , xd) induce the same
composition : indeed by the induction hypothesis, once this is shown, all the remaining elementary
matrices are actually acting on (x2, . . . , xd) and the induction hypothesis will show that it is inde-
pendent of the choice of the regular sequence for those variables.
But actually, (x1, . . . , xd) and (x1 + ax2, . . . , xd) induce the same flag of subvarieties. So the com-
position are obviously the same, and thus, the lemma is proved. �

Back to the proof of the theorem. We have defined s(i) when i is a closed immersion that splits as
a composition of codimension 1. For a general closed immersion Z → X, one can cover X by opens
subsets U such that the immersion Z∩U → U splits as above. The map s(i) is then uniquely defined
on each such opens that cover X and the maps are compatible so we can define s(i) : S(X)→ S(Z)
using that S is a Zariski sheaf. Now there only remains to define S(f) for an arbitrary morphism
f : Y → X between smooth k-schemes. Without loss of generality, we can assume both schemes are
separated (or even affine) since any smooth scheme has a Zariski covering by such objects. Indeed,
once f is defined on such elements, they will be one and only one way to define it for arbitrary
morphism by glueing because of the sheaf property of S with respect to open immersions. Then f

can be written as the composition Y
Γf

↪→ Y ×kX
π→ X, the first map being a closed immersion, and

the second being the smooth projection on X. Thus S(f) must be s(Γf )◦S(π). For the time being,
we denote it s(f), for we have yet to show that it coincides with S(f) for smooth maps.
We will use the following technical lemma :

Lemma 1.5 Let f : Y → X be a smooth map. Then, for all x ∈ Y , there an open neighborhood V
of f(x) in Y such that and an open U in X such that f(U) ⊂ V and such that Γf factors on U as

a composition Y = Y0
j0
↪→ Y1

j1
↪→ · · ·

jd−1

↪→ Yd = U ×k V of codimension 1 closed immersions, with the
following properties

1. The composition fk := Yk ↪→ Yk+1 ↪→ · · ·Yd = U ×k V → V is smooth.
2. The restriction on K(X) of the valuation that Yj−1 induces on K(Yj) is zero.
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Proof The existence of the factorization by smooth varieties follows essentially by [GD67], 17.12.2
again. Only the part about the valuations should require some explanation. Our properties are local
so we may assume that V is affine, say V = Spec(A). We can furthermore assume U ×k V is also
affine, equal to Spec(B) where B = A[X1, · · · , Xr]/(f1, · · · , fs). Then, the immersion Y ↪→ U ×k V
is defined by a regular sequence (fs+1, · · · , fs+d). The condition on valuation will be satisfied if
we know each of the fs+k are not in A, for in this case, the valuation on Frac(A) induced by
Yk−1 = Spec(A[X1, . . . , Xr]/(f1, . . . , fs+k−1)) on Yk = Spec(A[X1, . . . , Xr]/(f1, . . . , fs+k)) is simply
viewing an element of Frac(A) as an element of Frac (A[X1, . . . , Xr]/(f1, . . . , fs+k) and looking at
its multiplicity on Spec(A[X1, . . . , Xr]/(f1, . . . , fs+k−1)). If all the fs+i are not in A, then this
valuation will always be zero. But by [GD67], 17.12.2, the family (dfs+1, . . . , dfs+d) in ΩB/A must
be a free familly. Since dg = 0 if g ∈ A, none of the fs+k is in A and the lemma is proved. �

Now, let us consider such a flag, and denote by yk the generic point of Yk. For every 1 ≤ k ≤ d we
have the following diagram :

S(K(X))

S(X)

S(Yk) S(Yk−1)

S(OYk,yk−1
) S(κ(yk)) .

S(fk)
S(fk−1)

s(jk−1)

syk−1

The existence of the leftmost map and the commutativity of the outermost triange comes from (ii)
of (A3). Commutativity of the outer squares are the definition of the maps involved. This shows
that s(jk−1) ◦ S(fk) = S(fk−1). From that we deduce that

S(f) = S(f0)

= s(j0) ◦ s(j1) ◦ · · · ◦ s(jd) ◦ S(fd) ,

but s(j0)◦s(j1)◦· · ·◦s(jd) = s(Γf ) by definition and S(fd) = S(πX). So S(f) = s(Γf )◦S(πX) = s(f)
at least locally for the Zariski topology, and since S is a sheaf for the Zariski topology, they are the
same, and we will not distinguish anymore.

Let us now check that the definiton we have for closed immersion and the already-defined value
of S on smooth maps is compatible. Let f : Y → X be a smooth morphism and i : Z → X be a
closed immersion of codimension 1, consider the cartesian square

Z ′ Y

Z X .

i′

f ′ f

i

As usual, we may assume that X, Y and Z are irreducible, then Z ′ is 1-codimensional. Then,
compatibility comes from the commutativity of the following diagram :
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S(Oz) S(κ(z))

S(X) S(Z)

S(Y ) S(Z ′)

S(Oz′) S(κ(z′)) .

sz

S(f)

s(i)

S(f ′)

s(i′)

sz′

The existence of the left and right outermost maps, and the fact that the left and right trape-
zoids form a commutative diagram comes from (i) of axiom (A3) along with the definition of S
on smooth maps. The fact that the outermost square commutes is also (i) of (A3). The top and
bottom trapezoids are merely the definition of s(i) and s(i′).
It then follows that s(i) is compatible with S(f) for any smooth morphism f and closed immersion
i, indeed such an immersion can locally be factored as a sequence of codimension 1 closed immer-
sions, and then a repeated application of the preceding case yields the compatibility.

The last point to check is functoriality of S, Let g : Z → Y and f : Y → X. It suffices to apply
S to the following diagram :

Z Z ×k Y Z ×k Y ×k X

Y Y ×k X

X .

g

f

By what have been checked this far, the resulting diagram will be commutative. Commutativity of
the resulting diagram is exactly the fact that S(f ◦ g) = S(g) ◦ S(f).

Finally, the object we defined is indeed an unramified sheaf, for these properties only depends
on the restriction to SmSm

k as we have already remarked. �

Remark This rather long proof also shows that, if E is a sheaf on Smk of set satisfying (U0) and
(U1) and if S is an unramified sheaf of set. Then to construct a morphism Φ : E → S, it is enough
to give a natural transform φ : E|Fk

→ S|Fk
such that for any F ∈ Fk and any discrete valuation

v on F , such that φ sends E(Ov) ⊂ E(F ) in S(Ov) ⊂ S(F ), and such that the following square
commute :

E(Ov) E(κ(v))

S(Ov) S(κ(v)) .

sv

φ φ

We now state a condition on which the resulting sheaves are A1-invariant.
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Proposition 1.6 1) Let S be an unramified sheaf of sets on SmSm
k , then, S is A1-invariant if

and only if the following is satisfied : for any k-smooth local ring A of dimension at most one,
the canonical map S(A)→ S(A1

A) is bijective.
2) Let S be an unramified sheaf of sets on Smk, then, S is A1-invariant if and only if it satisfies

the following : for any F ∈ Fk, the canonical map S(F )→ S(A1
F ) is bijective.

Proof 1) One implication is clear. Let us assume S satisfies the condition. Let X ∈ Smk be
irreducible with function field F . Then we have the following commutative diagram

S(X) S(A1
X)

S(F ) S(F (T ))

in which every map is injective (S(X) → S(A1
X) is injective since it admits a left inverse by

considering X ↪→ A1
X → X).

The map S(A1
X)→ S(F (T )) factors as S(A1

X)→ S(A1
F )→ S(F (T )). By assumption S(F ) =

S(A1
F ). so that S(A1

X) is actually a subset of S(F ). Now for any x ∈ X(1), it is enough to
prouve that there are inclusions S(A1

X) ⊂ S(OX,x) ⊂ S(F ), indeed, taking intersection we
would then have S(A1

X) ⊂
⋂

x∈X(1)

S(OX,x). Since by assumption we have S(OX,x) = S(A1
OX,x

),

we’re done.
2) As previously one implication is immediate. In the other direction, let X ∈ Smk be irreducible

with function field F . Then we have a commutative square

S(A1
X) S(A1

F )

S(X) S(F )

where the rightmost map is bijective. This implies that the leftmost map is injective. We also
know that this map is surjective as it is a left inverse to S(X) → S(A1

X). Hence the map is
bijective, which proves the claim.

�

Remark If we are given an unramified sheaf S on SmSm
k , with added data (D3) to the associated

FSm
k -datum, with the property that S(F )→ S(F (T )) is injective, then S is an unramified Fk-datum

if and only if its extension to k(T ) is an unramified Fk(T )-datum. Indeed thanks to this hypothesis,
all the maps S(X)→ S(X⊗k k(T )), S(OX,x)→ S(OX⊗kk(T ),x̄⊗kk(T )) etc.. will be injective. Hence,
to check the axioms of an unramified Fk(T ) datum for the extension of S will check it as well for
S. By this fact, one can often reduce to the case of an infinite base field.
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