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ABSTRACT. In this paper, we initiate a study of motivic homotopy theory at infinity. We use
the six functor formalism to give an intrinsic definition of the stable motivic homotopy type at
infinity of an algebraic variety. Our main computational tools include cdh-descent for normal
crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under `-adic realization, the
motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results
hold for Steenbrink’s limiting Hodge structures and Wildeshaus’ boundary motives. Under the
topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety
recovers the singular complex at infinity of the corresponding analytic space. We coin the notion
of homotopically smooth morphisms with respect to a motivic∞-category and use it to show a
generalization to virtual vector bundles of Morel-Voevodsky’s purity theorem, which yields an
escalated form of Atiyah duality with compact support. Further we study a quadratic refinement
of intersection degrees taking values in motivic cohomotopy groups. For relative surfaces, we
show the stable motivic homotopy type at infinity witnesses a quadratic version of Mumford’s
plumbing construction for smooth complex algebraic surfaces. Our main results are also valid for
`-adic sheaves, mixed Hodge modules, and more generally motivic∞-categories.
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1. INTRODUCTION

Topology at infinity is essentially the study of topological properties that persistently occur
in complements of compact sets. For example, a space is intuitively simply connected at infinity
if one can collapse loops far away from any small subspace. Euclidean space Rn, n ≥ 3, is the
unique open contractible n-manifold that is simply connected at infinity. In particular, the
Whitehead manifold is not simply connected at infinity and therefore not homeomorphic to
R3. This article describes our first attempt at extending the theory of topology at infinity for
open manifolds to smooth affine varieties. An overriding goal is to develop a study of intrinsic
motivic invariants which can distinguish between A1-contractible varieties. For background
on motivic homotopy theory and A1-contractible varieties we refer to the survey [AØ19]. Our
approach makes extensive use of the six-functor formalism in stable motivic homotopy theory,
as developed in [Ayo07a, CD19], and we assume some familiarity with this material.

Let S be a qcqs (quasi-compact quasi-separated) base scheme. Its stable motivic homotopy
category SH(S) is a closed symmetric monoidal ∞-category, see, e.g., [DRØ03, Hoy14, Jar00,
Rob15]. To any separated S-scheme of finite type f : X → S we define Π∞S (X), the stable motivic
homotopy type at infinity of X , by the exact homotopy sequence

(1.0.0.a) Π∞S (X)→ f!f
!(1S)

αX−−→ f∗f
!(1S)

Here 1S is the motivic sphere spectrum over S, f!f
!(1S) is the stable homotopy type of X ,

f∗f
!(1S) is the properly supported stable homotopy type of X . The canonical morphism αX

is obtained from the six-functor formalism for the stable motivic homotopy category SH(S),
which implies the following fundamental properties.

• If X/S is smooth, then f!f
!(1S) = Σ∞X+ is the motivic suspension spectrum of X

• If X/S is proper, then αX is an isomorphism
• The morphism αX is covariant with respect to proper morphisms and contravariant

with respect to étale morphisms
With the intrinsic definition of Π∞S (X) in (1.0.0.a) we deduce a number of novel properties in

the spirit of proper homotopy theory. Let us fix a compactification X̄ of X over S and denote
by ∂X its reduced boundary. Then the induced immersions j : X → X̄ , i : ∂X → X form a
diagram of S-schemes

(1.0.0.b) X �
� j //

f %%

X̄

��

∂X? _
ioo

gxx
S

We observe the stable homotopy type at infinity of X is determined by the data in (1.0.0.b) via
a canonical equivalence

(1.0.0.c) Π∞S (X) ' g∗i∗j∗f !(1S)

This shows Π∞S (X) is independent of the chosen compactification and our construction has
properties analogous to Deligne’s vanishing cycle functor for étale sheaves, see [DK73]. We
may reformulate (1.0.0.c) by means of the canonically induced exact homotopy sequence

(1.0.0.d) Π∞S (X)→ ΠS(∂X)⊕ΠS(X)
i∗+j∗−−−→ ΠS(X̄)

By a closed pair of S-schemes (Y,W ) we mean a closed immersion W 6↪→ Y of S-schemes,
and a morphism φ : (Y,W )→ (X,Z) is an S-morphism φ : Y → X such that φ−1(Z) = W .
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Suppose X , Y are proper S-schemes, and φ induces an isomorphism of formal completions

φ : ŶW
∼=−→ X̂Z

It follows that there exists a canonical equivalence in SH(S)

(1.0.0.e) φ∗ : Π∞S (Y −W )
'−→ Π∞S (X − Z)

This shows the stable motivic homotopy type at infinity functor Π∞S (−) satisfies analyticial
invariance. The validity of (1.0.0.e) follows by Wildeshaus’ proof of [Wil06, Theorem 5.1] and
(1.0.0.d) (we leave further details to the interested reader).

Returning to the notation in (1.0.0.b), let us assume X̄ , ∂X are smooth S-schemes, and write
N for the normal bundle of ∂X in X̄ . In Theorem 3.3.2 we use the Euler class e(N) in SH(S) to
deduce the exact homotopy sequence

(1.0.0.f) Π∞S (X)→ ΠS(∂X)
e(N)−−−→ Σ∞ThS(N)

It is helpful to think of the passage from (1.0.0.a) to (1.0.0.f) in the language of problem solving.
Our “problem” is to understand Π∞S (X) and the “solution” in the smooth case is the Euler class
for the normal bundle of the closed immersion ∂X 6↪→ X̄ .

In the following, we further assume X̄ is a smooth proper S-scheme and ∂X is a normal
crossing divisor on X̄ . We may write ∂X = ∪i∈I∂iX as the union of its irreducible components
∂iX , so there is a canonical closed immersion νi : ∂iX → X̄ . For any subset J ⊂ I , we
equip ∂JX := ∩j∈J∂jX with its reduced subscheme structure, where ∩ is suggestive notation
for fiber products over the boundary ∂X . If J ⊂ K, there is a canonical proper morphism
νJK : ∂KX → ∂JX . By means of descent for the cdh-covering

ti∈I∂iX → ∂X

we identify ΠS(∂X) with the colimit1 of the naturally induced diagram in SH(S)

(1.0.0.g) ΠS(∂IX) −→
⊕

]J=]I−1

ΠS(∂JX)
−→
···
−→

⊕
]J=]I−2

ΠS(∂JX)
−→
···
−→ · · ·

−→
···
−→

⊕
i∈I

ΠS(∂iX)

The face map on the summand ΠS(∂KX) is defined by the pushforward maps∑
J⊂K,]J=]K−1

(νJK)∗

Similarly, we identify Σ∞ThS(N) with the limit of the naturally induced diagram in SH(S)

(1.0.0.h)
⊕
i∈I

Σ∞ThS(Ni)
−→
···
−→

⊕
]J=2

Σ∞ThS(NJ)
−→
···
−→

⊕
]J=3

Σ∞ThS(NJ)
−→
···
−→ · · · −→ Σ∞ThS(NI)

Here, NJ is the normal bundle of ∂JX in X̄ , and the coface map on the summand Σ∞ThS(NK)
is defined by the Gysin maps ∑

J⊂K,]J=]K−1

(νJK)!

Our general computations culminate in Theorem 5.3.2, where we identify Π∞S (X) with the
homotopy fiber of the map

colimn∈(∆inj)op

 ⊕
J⊂I,]J=n+1

ΠS(∂JX)

 µ−→ lim
n∈∆inj

 ⊕
J⊂I,]J=m+1

Σ∞ThS(NJ)


1Limits and colimits in this paper are taken in the sense of∞-categories.
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induced by
(µi,j)i,j∈I :

⊕
i∈I

ΠS(∂iX) −→
⊕
j∈I

Σ∞ThS(Nj)

More precisely, µi,j is shorthand for the composite map

ΠS(∂iX)
νi∗−−→ ΠS(X̄)→ Σ∞

(
X̄

X̄ r ∂jX

)
'−→ Σ∞ThS(Nj)

Here, for the rightmost map, we make use of the homotopy purity equivalence

(1.0.0.i)
X̄

X̄ r ∂jX
' ThS(Nj)

for normal bundles of closed immersions [MV99, Theorem 3.2.23].

To refine these techniques we develop a theory of duality with compact support. In the
process, we generalize the homotopy purity theorem and give new examples of rigid objects.
Our approach is based on the notion of a homotopically smooth morphism. If f : X → S is a
smoothable lci morphism with virtual bundle τf over X , we say that f is homotopically smooth
(h-smooth) if the naturally induced morphism

pf : Th(τf )→ f !(1S)

is an isomorphism (see Definition 4.1.7 for details). Any closed immersion between smooth
varieties over a field is h-smooth. When f is h-smooth and i : Z → X is a closed immersion
with Z/S h-smooth, Theorem 4.1.12 shows the relative purity isomorphism

ΠS(X/X − Z, v) ' ΠS(Z, i∗v +Ni)

Here, v is a virtual vector bundle over X and Ni is the (necessarily regular) normal bundle of
i : Z → X . Under the additional assumption that ΠS(X, v) is rigid, we show in Corollary 4.2.5
the duality with compact support isomorphism

ΠS(X, v)∨ ' Πc
S(X,−v − τf )

This duality isomorphism can be seen as a motivic analog of classical topological results due to
Atiyah [Ati61, §3], Milnor-Spanier [MS60, Lemma 2]. As an application, we identify the stable
motivic homotopy type at infinity of hyperplane arrangements in Section 4.3.

In Section 6, we consider the case of a compactified smooth surface whose boundary is a
union of rational curves. More precisely, let X/S be a smooth family of surfaces over S with a
smooth proper compactification X̄/S, whose boundary ∂X is a normal crossing divisor on X̄ ,
see Definition 5.1.1. We assume in addition that each branch ∂iX , with its reduced schematic
structure, is a rational curve over S. This setup gives is a quadratic generalization of Mumford’s
plumbing game [Mum61] using Chow-Witt groups. While Mumford uses orientations on the
normal bundles of the branches, which are copies of the projective line, much of the subtleties
in our setting comes from working with twisted Milnor-Witt K-theory sheaves in order to
compute the quadratic degree maps of the intersections of the branches taking values in the
Grothendieck-Witt ring. We decompose ΠS(∂X) into its combinatorial part DX , which is an
Artin motivic spectrum over S, and its geometrical part ⊕i∈I1S(1)[2]. In Theorem 6.2.7, we
show Π∞S (X) is the homotopy fiber of a map

DX ⊕
⊕
i∈I

1S(1)[2]

(
a b
b′ µ

)
−−−−−−→ D′X ⊕

⊕
j∈I

Th(N0
j )
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The map µ is computed by a “quadratic Mumford matrix” defined by the composite

(1.0.0.j) µij : 1S(1)[2] ↪→ ΠS(∂iX)
νi∗−−→ ΠS(X̄)

ν!
j−→ ΠS(∂jX, 〈Nj〉) � Th(N0

j )

When S = Spec(O) is a semi-local essentially smooth scheme of a field, we can interpret
µij as the class of a quadratic form (∂iX, ∂jX)quad ∈ GW(O) called the quadratic degree of the
intersections of the divisors ∂iX and ∂jX . The close connection with quadratic forms arises
since elements of the ith Chow-Witt group is represented by formal sums of subvarieties Z of
codimenison i equipped with an element of GW(k(Z)). Moreover, the rank of the quadratic
degree equals the corresponding Mumford degree.

Further we specialize our results to motives. The above formula implies that the motive at
infinity, i.e., Wildeshaus’ boundary motive, of X is an Artin-Tate motive. When S is a finite
field, a global field, or a number ring, we have the motivic t-structure on rational Artin-Tate
motives at our disposal (see [Lev93] for the case of fields, and [Sch11] for number rings). Our
main result can be restated (see Corollary 6.3.3) in terms of abelian Artin-Tate mixed motives,
by asserting the existence of an exact sequence

0→H∞3 (X)→
⊕
i∈I

1S(2)

∑
i<j p

i!
ij−p

j!
ij−−−−−−−−→
⊕
i<j

MS(∂ijX)(2)

→ H∞2 (X)→
⊕
i∈I

1S(1)
µ−−→
⊕
j∈I

1S(1)

→ H∞1 (X)→
⊕
i<j

MS(∂ijX)

∑
i<j p

i
ij∗−p

j
ij∗−−−−−−−−−→

⊕
i∈I

1S → H∞0 (X)→ 0

Here, µ is the Mumford matrix2 and H∞i (X) is the ith homology motive at infinity of X . One
can extract the weight filtration of explicit examples of abelian mixed motives from the above
exact sequence. This gives an abelian motivic extension of Mumford’s work to the arithmetic
case. Due to its motivic nature, it has the advantage of giving universal formulas in the various
realizations (`-adic, rigid, syntomic,...) of motives. For example, this informs us about Galois
representations attached to Hi(X).

We illustrate the general theory with examples of A1-equivalent smooth affine surfaces
with non-isomorphic stable motivic homotopy types at infinity. For any integer n > 0, the
Danielewski surface Dn is the closed subscheme of A3 cut out by the equation xnz = y(y − 1),
see [Dan88]. We note that D1 is the Jouanolou device over P1; in fact, Dn is A1-equivalent
to P1 for all n, see [AØ19, §3.4]. Over any field k, one can distinguish between Π∞k (Dm) and
Π∞k (Dn) for m 6= n by viewing Danielewski surfaces as affine modifications of A2. We re-
fer to Section 6.5 for precise statements and further examples, [DPØ19] for background on
A1-contractibility of affine modifications, and [Fie94] for Fieseler’s work on first homology at
infinity of Danielewski surfaces over the complex numbers. The technique of affine modifica-
tions gives an affirmative answer to Problem 3.4.5 in [AØ19]. Our viewpoint, however, is that
Π∞k is the first step towards a refined invariant in unstable motivic homotopy theory, see Ex-
ample 4.2.6. The problem of defining a notion of unstable motivic homotopy types at infinity
captures the tension between unstable and stable motivic homotopy theory. For example, the
six functor formalism is not available in the unstable setting. To remedy this one can take into
account all possible smooth compactifications. Nonetheless some of the techniques developed

2Due to the hypothesis on S, one has Hom(1S(1),1S(1)) ∼= Q.
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in this paper will carry over to unstable motivic homotopy categories, e.g., the calculations in
Section 5.1 hold in the cdh-topology, and one can expect more developments along these lines.

Remark 1.0.1. This paper’s results hold more generally for any motivic ∞-category such as
triangulated and abelian mixed motives, Artin-Tate motives, étale motives, torsion and `-adic
categories, mixed Hodge modules, etc., in place of SH. In the case there exists a realization
functor that commutes with the six operations, e.g., the Betti or `-adic realizations, then this
follows from the universality of SH.

Conventions. Our results are couched in the axiomatic setting of [CD19], [Kha16] which com-
plements [Ayo07a]. We fix a motivic∞-category ([CD19, Definition 2.4.45]) T over the category
of qcqs schemes, i.e., a monoidal stable homotopy functor according to [Ayo07a]. Our primary
example is the motivic stable homotopy category SH. In the language of presentable stable
monoidal ∞-categories [Kha16], SH is the initial motivic ∞-category. Thus there is a unique
morphism of motivic∞-categories SH→ T . To maintain intuition, we shall refer to the objects
of T (S) as T -spectra over S.

Acknowledgements. We gratefully acknowledge the support of the Centre for Advanced Study
at the Norwegian Academy of Science and Letters in Oslo, Norway, which funded and hosted
our research project “Motivic Geometry” during the 2020/21 academic year, and we extend our
thanks to the French “Investissements dAvenir” project ISITE-BFC (ANR-lS-IDEX-OOOB), the
French ANR project “FIBALGA” (ANR-18-CE40-0003), and the RCN Frontier Research Group
Project no. 250399 “Motivic Hopf Equations.” Østvær acknowledges the generous support
from Alexander von Humboldt Foundation and The Radboud Excellence Initiative.

2. PRELIMINARIES AND NOTATION

We work over quasi-coherent and quasi-compact base schemes S. The natural framework
for this paper is Morel-Voevodsky’s stable homotopy category SH(S) over S. Owing to the
works [Ayo07a, Ayo07b], [CD19], for varying S, these categories satisfy Grothendieck’ six functor
formalism which we will use extensively. The elimination of the noetherian hypothesis was
achieved in [Hoy14, Appendix C]. We will freely use the terminology and notations of [CD19]
(see Section A.5 for a summary). In particular, SH(S) is a triangulated category and a closed
symmetric monoidal category; moreover, the two structures are compatible, see e.g., [BRTV18],
[DRØ03], [Hoy14], [Jar00], [Voe98].

In Section 6 we employ the fact that SH(S) admits a stable∞-categorical enhancement. This
means that the six functors can be viewed as∞-functors, and commutative diagrams involving
Grothendieck’s six functor formalism can be enhanced into homotopy coherent diagrams. This
useful point of view started, to our knowledge, with the paper [LZ12] on étale `-adic sheaves.
Following Lurie’s idea, systematic treatment is given in [GR17, Chapter 3, Appendix]. Within
the framework of motivic categories, this was exploited in Khan’s thesis [Kha16]. For a recent
reference, we refer to [BRTV18, Appendix A].

As noted in Remark 1.0.1, our main results are also valid in arbitrary triangulated motivic
∞-categories such as the following examples.

• DMQ the∞-category of rational mixed motives: see [CD19]
• DM the ∞-category of integral motives: we take as a model the category of modules

over Spitzweck motivic cohomology ring spectrum relative to Z: see [Spi18]3

3This viewpoint was first advocated in [RØ06, RØ08]. If one restricts to schemes over a prime field k and inverts
the characteristic exponent of k, one can take the so-called cdh-motives as defined in [CD16] (using cdh-sheaves
with transfers).
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• DMét the∞-category of étale mixed motives: see [Ayo14, CD15]
• Db

c(−ét,Z`) the∞-category of integral `-adic étale sheaves: see [BBD82], [CD15, 7.2.18]
• DH the∞-category of motivic Hodge modules, which should correspond to complexes

of Saito’s mixed Hodge modules of geometric origin (obtained by realization of mixed
motives): see [Dre18]

Recall that an object M of a symmetric monoidal categoryM is rigid (or strongly dualizable)
with dual N if the functor (M ⊗ −) is left and right adjoint to (N ⊗ −).4 It is well-known that
for X/S smooth and proper, with tangent bundle TX , the spectrum Σ∞X+ over S is rigid with
dual Σ∞Th(−TX), see e.g., [CD19, 2.4.31].5

3. STABLE HOMOTOPY AT INFINITY

3.1. Main definitions and examples. This section defines the stable motivic homotopy type
at infinity for separated schemes defined over a quasi-compact quasi-separated (=qcqs) base
scheme S. We begin with a “classical” definition of stable motivic homotopy types, based on
the analogy with Voevodsky’s theory of motivic complexes ([VSF00, Chapter 5]).

Definition 3.1.1. Let f : X → S be a separated morphism. The stable motivic homotopy type
ΠS(X) and the properly supported stable motivic homotopy type Πc

S(X) of X in SH(S) are
defined by

ΠS(X) := f!f
!(1S)

Πc
S(X) := f∗f

!(1S)

The exchange natural transformation αf : f! → f∗ induces a canonical map

αX : ΠS(X)→ Πc
S(X)

Remark 3.1.2. Suppose k is a field. The corresponding cohomological notation for the motivic
complex (resp. properly supported cohomological complex) of X/k is f∗(1X) (resp. f!(1X)).
Definition 3.1.1 complies with more classical invariants and allows for a duality theory.

3.1.3. The standard properties of the six functor formalism for SH(S) implies:
• If X/S is smooth then ΠS(X) = Σ∞X+

• If X/S is proper then αX is an isomorphism
• ΠS(−) (resp. Πc

S(−)) is covariant functorial for all morphisms (resp. proper morphisms)
and contravariant functorial with respect to étale morphisms
• αX is natural with respect to proper covariance and étale contravariance

Definition 3.1.4. Let f : X → S be a separated morphism. The stable homotopy type at infinity of
X/S is the homotopy fiber of αX so that there is an exact homotopy sequence

Π∞S (X)→ ΠS(X)
αX−−→ Πc

S(X)

4This notion was introduced in [DP80], but it appeared earlier in the theory of pure motives [Dem71, Prop. 4] as
a key property in the theory of Tannakian categories [SR72]. We choose to write rigid since it is shorter than strongly
dualizable. Note that dualizable is ambiguous as it could also refer to the property DD(M) ' M for a dualizing
functor D in Grothendieck-style duality. Recall, for example, that for spectra over a scheme of characteristic 0, the
latter property amounts to constructibility (see [Ayo07a]).

5This is in fact an easy consequence of the six functor formalism, as formulated in [CD19, Theorem 2.4.50], given
that Σ∞X+ ' f!f

!(1S), where f : X → S is the projection map: indeed, one deduces from the projection formula
and the purity property that f!f

!(1S) is rigid with dual f∗(1X) ' f](ThX(−TX)).
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Example 3.1.5. Motivic realization. Suppose S is a perfect field k with characteristic exponent p.
In this case, see [HKØ17], [RØ08], there is a realization functor to motives

(3.1.5.a) SH(k)→ DM(k)[1/p]

If X → Spec(k) is smooth, the motivic realization functor sends Πk(X) to M(X), Voevodsky’s
homological motive of X , and it sends Πc

k(X) to M c(X), Voevodsky’s homological motive of
X with compact support (see [CD15, Proposition 8.10]). It follows that the motivic realization
functor sends Π∞k (X) to the boundary motive ∂M(X) (see Wildeshaus [Wil06]). In particular, the
Betti or `-adic cohomology of Π∞k (X) coincides with the so-called interior cohomology of X .

We generalize the above discussion to arbitrary base schemes in Section 6.

Example 3.1.6. Betti realization. If the field k admits a complex embedding, there is a Betti
realization functor to the stable homotopy category

(3.1.6.a) SH(k)→ SHtop

Owing to Ayoub’s enhancement of (3.1.6.a) to an arbitrary base scheme using the technique
of analytical sheaves [Ayo10], one derives that ΠS(X) realizes to the singular chain complex
S∗(X), and Πc

S(X) realizes to the Borel-Moore singular chain complex SBM∗ (X). Example 3.1.5
implies the Betti realization of Π∞S (X) coincides with the singular complex at infinity, S∞∗ (X),
whose homology groups are the singular homology groups at infinity H∞∗ (X). Indeed, for a
topological space W , there is a distinguished triangle of chain complexes of abelian groups

(3.1.6.b) S∞∗ (W )→ S∗(W )
αW−−→ Slf∗ (W )→ S∞∗ (W )[1]

Here, S∗(W ) (resp. Slf∗ (W )) be the complex of singular chains (resp. locally finite singular
chains) on W , see [HR96, Chapter 3]. If W is locally contractible and σ-compact, then Slf∗ (W )
is quasi-isomorphic to the Borel-Moore complex of W .

3.2. Computation via compactifications.

3.2.1. Let f : X → S be a separated morphism. We fix an arbitrary compactification X̄ of X
over S and denote by ∂X = (X̄ − X)red its boundary. Consider the immersions j : X → X̄ ,
i : ∂X → X . Using the localization property of SH, one derives the exact homotopy sequence

(3.2.1.a) Πc
S(∂X)

i∗−→ Πc
S(X̄)

j∗−→ Πc
S(X)

Moreover, using properness of X̄ and ∂X , there is a naturally induced commutative diagram
with vertical isomorphisms

(3.2.1.b) ΠS(∂X)
i∗ //

α∂X ∼
��

ΠS(X̄)

αX̄∼ ��
Πc
S(∂X)

i∗ // Πc
S(X̄)

We define the relative stable motivic homotopy type ΠS(X̄,X) of the pair (X̄,X) by the
exact homotopy sequence

(3.2.1.c) ΠS(X)
j∗−→ ΠS(X̄)

π−→ ΠS(X̄,X)

In the next result, directly inspired by [Wil13, Theorem 1.6], we relate (3.2.1.a) and (3.2.1.c)
to the stable motivic homotopy type at infinity.
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Proposition 3.2.2. There exist canonical maps β and δ in SH(S) rendering the following diagram of
homotopy exact columns and rows commutative

(3.2.2.a) 0 //

��

ΠS(∂X)

i∗
��

ΠS(∂X)

β
��

ΠS(X)
j∗ // ΠS(X̄)

j∗

��

π // ΠS(X̄,X)

δ
��

ΠS(X)
αX // Πc

S(X) // Π∞S (X)[1]

The maps β and δ are natural in (X̄,X, ∂X), covariantly functorial with respect to proper maps, and
contravariantly functorial with respect to étale maps (see 3.2.4).

Proof. To define β and δ canonically we rely on the six functors formalism. By the localization
property, there exist exact homotopy sequences of functors

i∗i
! ad′i−−→ 1

adj−−→ j∗j
∗(3.2.2.b)

j!j
∗ ad′j−−→ 1

adi−−→ i∗i
∗(3.2.2.c)

A combination of (3.2.2.b) and (3.2.2.c) yields the commutative diagram

(3.2.2.d) 0 //

��

i∗i
!

ad′i

��

i∗i
!

i∗i∗.ad′i

��
j!j
∗

ad′j // 1
adi //

adj

��

i∗i
∗

i∗i∗.adj

��
j!j
∗
ad′j .j∗j

∗
// j∗j

∗ adi.j∗j∗// i∗i
∗j∗j

∗

Here we us the fact that i∗ and j∗ are fully faithful, so that j!j∗j∗j∗ ' j!j∗ and i∗i∗i∗i! ' i∗i!. The
bottom row is obtained from (3.2.2.c) by post-composition with j∗j∗, and the rightmost column
is obtained from (3.2.2.b) by pre-composition with i∗i∗. Thus, all columns and rows in (3.2.2.d)
are homotopy exact. Let f̄ : X̄ → S be the structure map. Inserting f̄ !(1S) into (3.2.2.d) and
applying f̄! = f̄∗ yields the desired diagram (3.2.2.a). �

Remark 3.2.3. In the setting of Proposition 3.2.2 there are structure maps

X �
� j //

f %%

X̄

f̄��

∂X? _
ioo

gxx
S

The proof of Proposition 3.2.2 gives the following diagram of exact homotopy sequence

ΠS(∂X)
β //

∼ ��

ΠS(X̄,X)
δ //

∼��

Π∞S (X)[1]

∼��
g!g

!(1S) // g!i
∗f̄ !(1S) // g∗i

∗j∗f
!(1S)

f̄!i∗i
!f̄ !(1S)

ad′i // f̄!i∗i
∗f̄ !(1S)

adj // f̄!i∗i
∗j∗j

∗f̄ !(1S)
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That is, β (resp. δ) is induced by the counit map ad′i (resp. unit map adj) of the adjunction
(i∗, i∗) (resp. (j∗, j∗)). Here we use simplified notation for the morphisms in the lower rows. In
particular, we obtain the following interesting formula for the stable homotopy type at infinity
of X

(3.2.3.a) Π∞S (X) ' g∗i∗j∗f !(1S)[−1]

This shows Π∞S (−) is analogous to the vanishing cycle functor for étale sheaves [DK73].

3.2.4. Functoriality properties. Suppose

Y �
� l //

f ��

Ȳ

f̄��

∂Y? _
koo

g
��

X �
� j // X̄ ∂X? _

ioo

is a commutative diagram of S-schemes, where X̄ , Ȳ are proper, i, k closed immersions, and
j, l open immersions. Then, if f is proper, there is a commutative diagram

ΠS(∂Y )
βY //

g∗
��

ΠS(Ȳ , Y )
δY //

(f̄ ,f)∗
��

Π∞S (Y )[1]

f∗
��

ΠS(∂X)
βX // ΠS(X̄,X)

δX // Π∞S (X)[1]

Moreover, if f̄ , f , g are étale, we obtain the commutative diagram

ΠS(∂X)
βX //

g∗

��

ΠS(X̄,X)
δX //

(f̄ ,f)∗
��

Π∞S (X)[1]

f∗

��
ΠS(∂Y )

βY // ΠS(Ȳ , Y )
δY // Π∞S (Y )[1]

Remark 3.2.5. Another way of stating Proposition 3.2.2 is that Π∞S (X) is the homotopy fiber of
the canonical map

(3.2.5.a) ΠS(∂X)⊕ΠS(X)
i∗+j∗−−−→ ΠS(X̄)

Under motivic realization, (3.2.5.a) becomes the fundamental formula for the boundary motive
in [Wil06, Proposition 2.4]. Following the proof method of [Wil06, Theorem 5.1], we deduce the
theorem of analyticial invariance (1.0.0.e) for Π∞S (−).

3.3. The case of smooth compactifications.

3.3.1. Abstract Euler classes. Recall that for a vector bundle V over a scheme Z, the (abstract)
Euler class6 e(V ) defined in [DJK18] is the map in SH(Z)

e(V ) : 1Z ' Th(0X)
s∗−→ ThZ(V )

induced by the zero section s of V . If g : Z → S is smooth, the left adjoint g] to g∗ yields by
abuse of notation a map

e(V ) : ΠS(Z)→ Th(V )

in SH(S). We develop a technique for computing stable motivic homotopy types at infinity
involving abstract Euler classes for normal bundles.

6It can be interpreted as a twisted cohomology class e(V ) ∈ H0(Z, 〈V 〉), in the 0-th stable cohomology group,
which generalizes the well-known Euler classes in oriented and SLc-oriented cohomology theories.
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Theorem 3.3.2. Let X be an S-scheme with compactification X̄ and boundary ∂X = X̄ −X . Suppose
X̄ , ∂X are smooth S-schemes, and let N denote the normal bundle of ∂X in X̄ . Then there exists an
exact homotopy sequence in SH(S)

(3.3.2.a) Π∞S (X)→ ΠS(∂X)
e(N)−−−→ Th(N)

Proof. The exact homotopy sequence (3.3.2.a) follows from Proposition 3.2.2 and an analysis of
βX : ΠS(∂X)→ ΠS(X̄,X) ' Σ∞(X̄/X̄−∂X). Owing to [DJK18], the latter map coincides with
the composite

(3.3.2.b) Σ∞∂X+
i∗−→ Σ∞X̄+ → Σ∞(X̄/X̄ − ∂X)

Homotopy purity for closed embeddings [MV99, Theorem 3.2.23] identifies (3.3.2.b) with

(3.3.2.c) Σ∞∂X+
i∗−→ Σ∞X̄+

i∗−→ Th(N)

The excess intersection formula in [DJK18, 3.2.6] equates the composite i∗i∗ in (3.3.2.c) with the
abstract Euler class e(N). �

Corollary 3.3.3. Under the assumptions in Theorem 3.3.2 there exists a canonical isomorphism

Π∞S (X) ' ΠS(N×)

Here, N× is the complement of the zero section of the normal bundle N . If N contains a trivial direct
factor, or more generally the Euler class e(N) = 0, then

Π∞S (X) ' ΠS(∂X)⊕ Th(N)[−1]

Therefore, if N is trivial of rank d, we have

Π∞S (X) ' ΠS(∂X)⊕ 1(d)[2d− 1]

Example 3.3.4. For d > 0 the stable homotopy type at infinity of the affine space Ad is given by

Π∞S (Ad) ' 1⊕ 1(d)[2d− 1]

This follows since Ad’s Euler class vanishes.

Remark 3.3.5. We note that Π∞k (X) is a strictly finer invariant than its motivic realization, the
boundary motive ∂M(X) in Example 3.1.5. Indeed, Theorem 3.3.2 shows there is an exact
homotopy sequence in DM(k)[1/p]

∂M(X)→M(∂X)
c̃r(N)−−−→M(∂X)(r)[2r]

Here, r is the rank ofN and the map c̃r(N) is induced by multiplication with the top Chern class
cr(N) ∈ CHr(∂X) ' Hom(M(∂X),1(r)[2r]). In particular, the sequence splits if cr(N) = 0.
However, the vanishing of the homotopy Euler class e(N), which implies the vanishing of the
Euler class in Chow-Witt groups, is a strictly stronger condition than the vanishing of the top
Chern class. For the smooth affine quadric 5-fold Q : x1y1 + x2y2 + x3y3 = 1 in A6, the kernel
of the surjection (x1, x2, x3) : k[Q]3 → k[Q] defines a nontrivial and stably trivial vector bundle
ξ of rank 2 on Q. Since det(ξ) is trivial, ξ is orientable. While ξ’s Chern classes are trivial, ξ’s
Euler class in C̃H

2
(Q) = KMW

−1 (k) equals η, see the case n = 2 in [AF14, Lemma 3.5].
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4. DUALITY AND FUNDAMENTAL CLASS OF THE DIAGONAL

In this section, we develop computational techniques based on the notion of homotopically
smooth morphisms with respect to a motivic ∞-category. Our method involves duality with
compact support instead of compactifications, as in Section 3. In the process, we generalize the
Morel-Voevodsky homotopy purity theorem [MV99] and give new examples of rigid objects;
see [NSØ09, Remark 8.2] for examples of compact non-rigid objects.

4.1. Homotopical smoothness and generalized purity.

4.1.1. In the setting of stable motivic homotopy, we shall use the technique of twisted Thom
spaces to deduce the duality results we use in our computations. Recall the Thom space functor,
from vector bundles over a scheme X to the pointed homotopy category over X , is given by

Th : E 7→ Σ∞Th(E),Th(E) = E/E×

It sends direct sums to tensor products. Owing to [CD19, Remark 2.4.15] this functor admits
an extension to a monoidal functor, called the Thom spectrum functor

Th : K(X)→ (Pic(SH(X)),⊗)

from the Picard category of virtual bundles over X to the monoidal category of ⊗-invertible
objects in SH(X). When v = 〈E〉 is the virtual bundle associated to a vector bundle, one has
Th(v) = Σ∞Th(E). Given a smooth morphism p : X → S it is sometimes convenient to simply
“forget the base” of Thom spectra; we set ThS(v) := p] Th(v).

Using this observation, we extend Definition 3.1.1 as follows.

Definition 4.1.2. Let f : X → S be a separable morphism and v a virtual vector bundle over
X . One associates to X/S and v the following motivic spectra over S:

• Homotopy: ΠS(X, v) = f!(Th(v)⊗ f !(1S))
• Cohomotopy: HS(X, v) = f∗(Th(v)⊗ f∗(1S)) ' f∗(Th(v))
• Borel-Moore (or (co)compactly supported) homotopy: Πc

S(X, v) = f∗(Th(v)⊗ f !(1S))
• Compactly supported cohomotopy: Hc

S(X, v) = f!(Th(v)⊗ f∗(1S)) ' f!(Th(v))

Definition 4.1.2 specializes to Definition 3.1.1 in the case of the trivial vector bundle v = 0,
i.e., we have ΠS(X, 0) = ΠS(X) and Πc

S(X, 0) = Πc
S(X). As in the previous case, the natural

transformation αf : f! → f∗ yields canonical maps:
• αX/S : ΠS(X, v)→ Πc

S(X, v)
• α′X/S : Hc

S(X, v)→ HS(X, v) (“forgetting compact support”)

Both αX/S and α′X/S are isomorphisms whenever X/S is proper.

Remark 4.1.3. Definition 4.1.2 can be adapted to an arbitrary triangulated motivic category T
in the sense of [CD19]. This generality is not strictly needed if there exists a realization functor
SH(S)→ T commuting with the six operations, as in the case of motives DMt(S). Twisting by
vector bundles is not pertinent for motives since there exists well-behaved Thom isomorphisms
Th(v) ' 1S(r)[2r], where r is the rank of v.7 The four theories in Definition 4.1.2 realize to
the homological motive MS(X), the cohomological motive hS(X) (“Chow motive” when X/S
is smooth proper), the “homological motive with compact support” M c

S(X) in Voevodsky’s
terminology, and the cohomological motive with compact support hcS(X), respectively.

4.1.4. Natural functoriality: Let f : Y → X be a separable morphism of S-schemes. Our choice
of terminology can be explained by the following naturally induced maps:

7On the contrary, in motivic homotopy theory the consideration of twists is indispensable.
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• f∗ : ΠS(Y, f−1v)→ ΠS(X, v)
• f∗ : HS(X, v)→ HS(Y, f−1v)
• f∗ : Πc

S(Y, f−1v)→ Πc
S(X, v)

• f∗ : HS(X, v)→ HS(Y, f−1v)

In addition, when f is proper then the comparison maps αX/S and α′X/S are compatible with
f∗, f∗, f∗, f∗.

Remark 4.1.5. Note, in particular, that homotopy twisted by some virtual bundle w on Y , with
or without compact support, is not covariant functorial unless w is the pullback of some virtual
bundle on X .

4.1.6. Exceptional functoriality (Gysin maps): Due to the existence of the fundamental classes
introduced in [DJK18] the four theories in Definition 4.1.2 satisfy exceptional functoriality.8 Let
f : Y → X be a smoothable lci morphism, i.e., f factors as a regular closed immersion followed
by a smooth morphism, with cotangent complex Lf . We refer to the associated virtual bundle
τf as the virtual tangent bundle of f . One deduces, from the system of fundamental classes in
[DJK18, Theorem 3.3.2], the canonical natural transformation

(4.1.6.a) pf : Th(τf )⊗ f∗ → f !

By adjunction, one deduces trace and cotrace maps (see §4.3.4 in loc. cit.)

trf : f!(Th(τf )⊗ f∗)→ Id

cotrf : Id→ f∗(Th(−τf )⊗ f !)

These maps induce the following Gysin maps:
• f ! : ΠS(X, v)→ ΠS(Y, f−1v + τf ), when f is proper
• f! : HS(Y, f−1v + τf )→ HS(X, v), when f is proper
• f ! : Πc

S(X, v)→ Πc
S(Y, f−1v + τf )

• f! : Hc
S(Y, f−1v + τf )→ Hc

S(X, v)

Again, assuming f is proper, the comparison maps αX/S and α′X/S are compatible with the
above Gysin morphisms in the obvious sense.

The following definition is a variant of [DJK18, Definition 4.3.7].

Definition 4.1.7. Let f : X → S be a smoothable lci morphism with virtual bundle τf over X
associated to the cotangent complex Lf . We say that f is homotopically smooth (h-smooth) with
respect to the motivic ∞-category T if the natural transformation (4.1.6.a) evaluated at the
sphere spectrum 1S

pf : Th(τf )→ f !(1S)

is an isomorphism.

4.1.8. One gets the following basic properties of h-smoothness: considering composable lci
smoothable morphisms f , g, h = f ◦ g (which is also lci smoothable), if f and g (resp. f and
h) are h-smooth, then so is h (resp. g). Moreover, if g! is conservative, g and h being h-smooth
implies f is h-smooth. On the other hand, h-smoothness is not stable under base change.

Example 4.1.9. Here are examples, in order of difficulty, of cases where f : X → S is h-smooth:
• f is smooth
• X , S are smooth over some base B and f is a morphism of B-schemes

8See [DJK18, 4.3.4] for the general case of a triangulated motivic category.
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• X , S are regular over a field k and T is continuous, see [DFKJ20, Appendix A] (all our
examples are continuous in this sense)

Note, in particular, that a closed immersion between smooth varieties over a field is h-smooth.
On the other hand, not all regular closed immersions are smooth. For example, the immersion
i : D → X of a relative normal crossing divisor D over S into a smooth S-scheme in the sense
of Definition 5.1.1 is not h-smooth unless D is smooth over S. Indeed, in Section 6, we show

i!(1X) ' colimn∈∆inj

⊕
J⊂I,]J=n

iJ !(Th(NJ))

which does not coincide with Th(NDX) if there is a non-trivial intersection on the branches of
D (consider the pullback to any such intersection).

Remark 4.1.10. It is expected that any morphism between regular schemes is h-smooth with
respect to SH(S). The said assertion holds and is called “absolute purity” in the case when T
is SH(S) ⊗ Q ([DFKJ20, Theorem 3.6]), rational mixed motives DMQ(S) ([CD19, 14.4.1]), and
étale integral motives DMét(S) ([CD16, 5.6.2]).

Example 4.1.11. The h-smoothness hypothesis allows one to compare the four different theories
from Definition 4.1.2 and generalize the smooth case. More precisely, if f : X → S is h-smooth,
the purity isomorphism induces isomorphisms

ΠS(X, v) = f!

(
Th(v)⊗ f !(1S)

) pf−→ f!

(
Th(v)⊗ Th(τf )

)
= Hc

S(X, v + τf )

Πc
S(X, v) = f∗

(
Th(v)⊗ f !(1S)

) pf−→ f∗
(

Th(v)⊗ Th(τf )
)

= HS(X, v + τf )

Moreover, these isomorphisms transform the usual functoriality (resp. Gysin maps) in the
source to the Gysin maps (resp. usual functoriality) on the target. This follows by considering
the “associativity formula” for fundamental classes in [DJK18, Theorem 3.3.2].

Given this new notion of h-smoothness, we extend the Morel-Voevodsky homotopy purity
theorem as follows.9

Theorem 4.1.12. Let f : X → S be an h-smooth morphism with virtual tangent bundle τf , and v
a virtual vector bundle over X . Let i : Z → X be a closed immersion and set g = f ◦ i. We let
ΠS(X/X − Z, v) denote the homotopy cofiber of the canonical map j∗ : ΠS(X − Z, v)→ ΠS(X, v).

Then the purity isomorphism pf induces an isomorphism

ΠS(X/X − Z, v) ' Hc
S(Z, i∗v + i∗τf )

Moreover, if Z/S is h-smooth andNi denotes the normal bundle associated with the (necessarily regular)
closed immersion i, there exists a (relative) purity isomorphism

ΠS(X/X − Z, v) ' ΠS(Z, i∗v +Ni)

Proof. For the closed immersion iwe have the associated localization homotopy exact sequence

j!j
! → Id→ i∗i

∗

By inserting Th(v)⊗ f !(1S) and applying f! we get the homotopy exact sequence

ΠS(X − Z, j∗v)→ ΠS(X, v)→ q!

(
Th(i∗v)⊗ i∗f !(1S)

)
Here, we use the identifications

f!j!j
!
(

Th(v)⊗ f !(1S)
)
' h!

(
Th(j∗v)⊗ j!f !(1S)

)
= ΠS(X − Z, j∗v)

f!i∗i
∗(Th(v)⊗ f !(1S)

)
' f!i∗

(
Th(i∗v)⊗ i∗f !(1S)

)
= q!

(
Th(i∗v)⊗ i∗f !(1S)

)
9When Z has crossing singularities, a more aesthetically pleasing formulation will be given in Theorem 5.2.5.
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In particular, there is an isomorphism

ΠS(X/X − Z, v) ' q!

(
Th(i∗v)⊗ i∗f !(1S)

)
The purity isomorphism yields the desired isomorphism

ΠS(X/X − Z, v) ' q!

(
Th(i∗v)⊗ i∗f !(1S)

)
pf−→ q!

(
Th(i∗v)⊗ i∗Th(τf )⊗ f∗(1S)

)
= q!

(
Th(i∗v + i∗τf )

)
= Hc

S(Z, i∗v + i∗τf )

As explained in Example 4.1.11, the second isomorphism in Theorem 4.1.12 is now a direct
consequence of the h-smoothness property of Z/S. �

4.2. Homotopy type at infinity and the fundamental class of the diagonal.

Lemma 4.2.1. Let f : X → S be a separated morphism and v a virtual vector bundle over X .
(1) There exists a canonical isomorphism

Hom(Hc
S(X, v),1S)

'−→ Πc
S(X,−v)

The isomorphism is functorial inX for both the natural functoriality with respect to proper maps
(4.1.4) and the Gysin morphisms with respect to smoothable lci morphisms (4.1.6).

(2) Assume, in addition, that f is h-smooth (4.1.7). Then there exists an isomorphism

Hom(ΠS(X, v),1S)
'−→ HS(X,−v)

which is again functorial with respect to the natural functoriality and the Gysin maps.

Proof. To prove the isomorphism in (1) we use

Hom(Hc
S(X, v),1S) = Hom(f!(Th(v)),1S)

(a)−−→ f∗Hom
(

Th(v), f !(1S)
)

(b)
' f∗

(
Th(−v)⊗ f !(1S)

)
= Πc

S(X,−v)

Here, (a) (resp. (b)) follows from the internal interpretation of the fact that f ! is right adjoint to
f! (resp. Th(v) is ⊗-invertible). The functoriality statement is obvious by construction.

To deduce (2), we establish the isomorphisms

Hom(ΠS(X, v),1S) = Hom
(
f!

(
Th(v)⊗ f !(1S)

)
,1S

) (a)−−→ f∗Hom
(

Th(v)⊗ f !(1S), f !(1S)
)

(b)
' f∗

(
Th(−v)⊗Hom

(
f !(1S), f !(1S)

))
,

(c)
' f∗

(
Th(−v)⊗ 1S

)
= HS(X,−v)

Here, (a) and (b) are justified as in (1), and (c) follows from the fact that the canonical map

(4.2.1.a) 1X → Hom
(
f !(1S), f !(1S)

)
obtained by adjunction is an isomorphism because f is h-smooth. The functoriality statement
follows from the definitions. �

Remark 4.2.2. We say that f is a pre-dualizing morphism if the map (4.2.1.a) is an isomorphism.
This condition implies the isomorphism in (2). The notion of a pre-dualizing morphism is
crucially linked with Grothendieck-Verdier duality, as shown by [CD19, 4.4.11]. In fact, if f !(1S)
is a dualizing object ([CD19, Definition 4.4.4]), it follows that f is pre-dualizing. Assuming that
S is a smooth Q-scheme, it follows from [Ayo07a] that any separated morphism f : X → S is
pre-dualizing.
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Theorem 4.2.3. Let f : X → S be an h-smooth morphism with virtual tangent bundle τf . Then the
purity isomorphism pf induces a canonical isomorphism

Hom
(
ΠS(X, v),1S

)
' Πc

S(X,−v − τf )

In addition, assume that f is smooth. Then the map α′f obtained by adjunction from the composite

ΠS(X)
αf−→ Πc

S(X) ' Hom
(
ΠS(X,−τf ),1S

)
fits into the commutative diagram

ΠS(X)⊗ΠS(X,−τf )
α′f //

'
��

1S

ΠS(X ×S X,−p∗1τf )
δ!
// ΠS(X)

f∗

OO

where the left vertical map is the Künneth isomorphism.10

If f is smooth, the above commutative diagram shows the map α′f can be computed under
the canonical isomorphism

[ΠS(X),Πc
S(X)] '[ΠS(X)⊗ΠS(X,−τf ),1S ]

' [X ×S X,ThS(p∗1)] =: Π2d,d(X ×S X, p∗1(τf ))

as the fundamental class of the diagonal

ηX×SX(∆X/S) = δ∗(1)

Remark 4.2.4. We note that when f is an h-smooth closed immersion i : Z → X , the diagonal
δ : Z → Z ×S Z is an isomorphism. In particular, the normal bundle of δ is unrelated to the
virtual tangent space −NZS of Z/S. For this reason, the preceding formula cannot be true
for arbitrary h-smooth morphisms. We expect ideas in derived algebraic geometry can fix this
defect.

Proof. The first isomorphism is a combination of the second isomorphism in Lemma 4.2.1 and
the second isomorphism of Example 4.1.11

Hom
(
ΠS(X, v),1S

)
' HS(X,−v)

p−1
f' Πc

S(X,−v − τf )

The commutativity of the square follows from the following facts:
• If f1 : X ×S X → X is the projection on the first factor, the associativity formula in

[DJK18, Theorem 3.3.2] shows there is an equality of fundamental classes ηδ.ηf1 = 1
• The assumption that f is smooth implies the cartesian square

X ×S X
f1 //

f2 �� ∆

X
f��

X
f
// S

is Tor-independent. Thus the transversal base change formula in [DJK18, Theorem 3.3.2]
implies the equality ∆∗(ηf ) = ηf1

�

10Which in our case is a tautology by definition of the tensor product of spectra and the fact that X/S is smooth.
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Theorem 4.2.3 implies the following more potent form of duality (see the end of Section 2 for
a review). We give concrete examples in Theorem 5.2.1.

Corollary 4.2.5 (Duality with compact support). Let X be an h-smooth scheme over S and v a
virtual bundle over X such that ΠS(X, v) is rigid. Then there exists an isomorphism

ΠS(X, v)∨ ' Πc
S(X,−v − τf )

In particular, the Borel-Moore homotopy object Πc
S(X,−v − τf ) is rigid.

Example 4.2.6. Suppose X is a d-dimensional smooth affine A1-contractible k-scheme. Owing
to Atiyah duality in Theorem 4.2.3 there is an exact homotopy sequence

(4.2.6.a) Π∞k (X)→ Πk(X)→ Πk(X,−TX)∨

The assumption on X implies the tangent bundle TX is trivial. Since Πk(X) ' 1 we deduce the
equivalences

Πk(X,−TX)∨ ' (Πk(X)(−d)[−2d])∨ ' Πk(X)(d)[2d] ' 1(d)[2d]

Morel’s connectivity theorem shows the map 1 → 1(d)[2d] is zero for d > 0. Hence there is an
equivalence

Π∞k (X) ' 1⊕ 1(d)[2d− 1]

In conclusion, the stable motivic homotopy type at infinity cannot distinguish between smooth
affine A1-contractible k-schemes of the same dimension. This is analogous to the classification
of Euclidean spaces among open contractible manifolds, see [AØ19], which cannot be achieved
by invariants of the stable topological homotopy category.

4.3. Stable motivic homotopy type at infinity of hyperplane arrangements.

4.3.1. In the following, we use Theorem 4.2.3 to compute the stable motivic homotopy type at
infinity of hyperplane arrangements. We say a smooth S-scheme X with structural morphism
f is stably A1-contractible if f∗ : Σ∞X+ → 1S is an equivalence. Vector bundles give basic
examples over S. To illustrate the preceding results, we determine the stable homotopy of a
normal crossing S-scheme.

Proposition 4.3.2. Let S be a stably A1-contractible smooth scheme over a field k, and X be a smooth
affine and stably A1-contractible S-scheme of dimension d. Suppose the closed subscheme D = ∪i∈IDi

of X is a smooth reduced crossing S-scheme in the sense of Definition 5.1.1. In addition, assume that for
any J ⊂ I , every connected component of DJ is stably A1-contractible over S. For a subset J ⊂ I we
set nJ = ]J , and for any generic point x of DJ we let cJ(x) denote the codimension of x in X .

Then there exists a canonical isomorphism

ΠS(X −D) '
⊕

J⊂I,x∈D(0)
J

1S

(
cJ(x)

)[
2cJ(x)− nJ

]
If D is a normal crossing divisor and m(n) is the sum of the number of connected components of all
codimension n subschemes DJ of X , then the isomorphism takes the form

ΠS(X −D) '
d⊕

n=0

m(n).1S(n)[n]

Proof. According to Corollary 5.1.13, one obtains that ΠS(X −D) is the homotopy limit of the
(finite) tower

(4.3.2.a) ΠS(X)→ ⊕i∈IΠS(Di, Ni)→ · · · → ⊕J⊂I,]J=nΠS(DJ , NJ)→ · · ·
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Suppose x is a generic point onDJ 6= ∅, for J ⊂ I , and writeDJ(x) for the associated connected
component. By assumption, DJ(x) is smooth and stably A1-contractible over k. Thus there is
an isomorphism

Z = K0(k) = HomSH(k)(1k,KGL)
∼=−→ HomSH(k)(Σ

∞DJ+,KGL) = K0(DJ)

In particular, the rank cJ(x) vector bundle NJ |DJ (x) is stably trivial. Since DJ(x)/S is stably
A1-contractible, it follows that

ΠS(DJ , NJ) ' ⊕xΠS(DJ(x), NJ |DJ (x)) ' ⊕x1S(cJ(x))[2cJ(x)]

To deduce the first assertion it suffices to show that the morphisms in (4.3.2.a) are zero. Recall
that these maps are sums of Gysin morphisms νJ !

K for J,K ⊂ I , K = J ∪ {k}, νJK : DK → DJ .
We are reduced to consider maps of the form

(4.3.2.b) 1S(cJ(x))[2cJ(x)]→ 1S(cK(y))[2cJ(y)]

Here, x (resp. y) is a generic point of DJ (resp. DK). Since DJ is nowhere dense in DK , all
such maps belong to some stable cohomotopy group π2r,r(S) for r > 0. The assumption that
S is stably A1-contractible over k implies π2r,r(S) ' π2r,r(k). Morel’s A1-connectivity theorem
shows the latter group is trivial. It follows that the map (4.3.2.b) is zero.

For the second assertion, it suffices to note that ifD is a normal crossing divisor, then cJ = nJ
for any J ⊂ I . �

Example 4.3.3. Let S/k be a stably A1-contractible smooth scheme. Proposition 4.3.2 applies to
the basic example when X ' Ad

S and D is a hyperplane arrangement in X .

Owing to Corollary 4.2.5 and Proposition 4.3.2, we deduce the following computation of
stable motivic homotopy types at infinity.

Proposition 4.3.4. Under the assumptions in Proposition 4.3.2 the object ΠS(X − D) is rigid (see
Section 2) and there are isomorphisms

Πc
S(X −D) ' ΠS(X −D)∨(d)[2d] '

⊕
K|DK 6=∅

1S(d− cK)[2(d− cK) + nK ]

Moreover, there exists a canonical isomorphism

Π∞S (X −D) '
⊕

J |DJ 6=∅

1S(cJ)[2cJ − nJ ]⊕
⊕

K|DK 6=∅

1S(d− cK)[2(d− cK) + nK − 1]

Finally, if D is a normal crossing divisor in X relative to S, then we have

Π∞S (X −D) '
d⊕

n=0

m(n).1S(n)[n]⊕
d⊕

n=0

m(n).1S(d− n)[2d− n− 1]

5. NORMAL CROSSING BOUNDARIES

5.1. Homotopy type of crossing singularities. We start with various notion of singularities
extending the classical notion of normal crossing divisor.

Definition 5.1.1. Let X is an S-scheme with irreducible components X• = (Xi)i∈I . For J ⊂ I ,
let XJ = ∩j∈JXj , where ∩ means fiber product over X and X ′J = (XJ)red. We say that X has
smooth (resp. regular, h-smooth) crossing over S if, for any non-empty J ⊂ I , X ′J is a smooth
(resp. regular, h-smooth, Definition 4.1.7) S-scheme.
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Suppose, in addition, thatX is a sub-scheme of a smooth (resp. regular, h-smooth) S-scheme
Ω. ThenX is called a normal (resp. regular, h-normal) crossing subscheme of Ω ifX is a smooth
(resp. regular, h-smooth) crossing S-scheme, and for all J ⊂ I there is the equality

codimΩ(XJ) =
∑
j∈J

codimΩ(Xj)

Remark 5.1.2.
(1) When X is a divisor of Ω, i.e., every irreducible component of X has codimension 1 in

Ω, we recover the classical notion of a normal crossing divisor relative to the base S.
(2) Working with the reduced schemeX ′J instead ofXJ allows to consider multiplicities on

the intersections of the irreducible components of X . That is, we don’t restrict to simple
normal crossing divisors.

5.1.3. Let X be a noetherian scheme and consider a finite closed cover11 of X , i.e., a surjective
map

p : ti∈IXi → X

obtained from closed immersions Xi → X . For the sake of intuitive notation, let ∩ = ×X be
shorthand for the fiber product of closed X-schemes. The Čech simplicial X-scheme Š∗(X•/X)
associated with p takes the form

(5.1.3.a) Šn(X•/X) =
⊔

(j0,...,jn)∈In+1

Xj0 ∩ . . . ∩Xjn

The degeneracy maps δin : Šn(X∗)→ Šn−1(X∗) are given by the appropriate closed immersions.
One can simplify Š∗(X•/X) by setting XJ = ∩j∈JXj for each subset J ⊂ I . To proceed we
consider semi-simplicial schemes.12 Let us choose a total order on the finite set I , and define
the ordered Čech semi-simplicial X-scheme Šord

∗ (X•) associated to X•/X by setting

(5.1.3.b) Šord
n (X•/X) :=

⊔
J⊂I,]J=n+1

XJ

The degeneracy maps in (5.1.3.b) admit the following description. To any subset J ⊂ I of
cardinality n + 1, we associate the uniquely defined n-tuple (j0, . . . , jn) ∈ In+1 such that J =

{j0, . . . , jn} and j0 < . . . < jn. This gives a canonical embedding Šord
∗ (X•/X) ⊂ Š∗(X•/X) of

N-graded X-schemes. In degree n, the factor XJ maps by the identity to Xj0 ×X . . . ×X Xjn .
The degeneracy maps δin in the simplicial structure on Š∗(X•/X) preserve Šord

∗ (X•/X). This
yields the desired semi-simplicial structure on Šord

∗ (X•/X). Moreover, the map p induces an
augmentation Šord

∗ (X•/X)→ X .

Remark 5.1.4. The ordered Čech semi-simplicial scheme is much smaller than Š∗(X•/X). It is
bounded by the cardinality c of the index set I in the sense that Šord

n (X•/X) = ∅ for all n > c
(a sum indexed by the empty set is the empty scheme).

5.1.5. Owing to [BRTV18, Appendix A] the stable homotopy category SH(S) has an underlying
stable∞-category S H (S), and the six functor formalism is compatible with the∞-structure.
We shall use a particular case of the said functoriality. Let SchS (resp. Schtf

S ) be the category of

11In applications, it is the set of irreducible components, but the flexibility with closed covers simplifies the
proofs.

12Let ∆inj be the category of finite ordered sets with morphisms only the injective maps. A semi-simplicial
object in a category C is a contravariant functor from ∆inj to C . There is a forgetful functor from simplicial objects
to semi-simplicial objects that forgets the degeneracy maps.
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separable schemes (resp. schemes separated of finite type) over S. To any motivic spectrum E
over S, we associate the contravariant∞-functor

SchopS
Π′S(−,E)
−−−−−→ S H (S), (f : X → S) 7→ f∗f

∗(E)

This is the ∞-categorical version of the notion of relative cohomology with coefficients in E.
Dually, we obtain the covariant∞-functor

Schtf
S

ΠS(−,E)−−−−−→ S H (S), (f : X → S) 7→ f!f
!(E)

5.1.6. Let us return to the setup in 5.1.3, with X = tXi∈I . Suppose p : X → S is a morphism of
finite type. For any J ⊂ I , we let pJ : XJ → S denote the obvious composition. To the ordered
Čech complex Šord

n (X•/X) and E we associate the functors

(∆inj)op → Schtf
S

ΠS(−,E)−−−−−→ S H (S)

∆inj → SchopS
Π′S(−,E)
−−−−−→ S H (S)

By using the augmentation map toX , we obtain canonical maps involving the limit and colimit
of the preceding functors

πX•/X,E : colimn∈(∆inj)op (⊕J⊂I,]J=n+1ΠS(XJ ,E))→ ΠS(X,E)

π′X•/X,E :Π′S(X,E)→ lim
n∈∆inj

(
⊕J⊂I,]J=n+1Π′S(XJ ,E)

)
We show the colimit (resp. limit) can be viewed as the “standard” resolution of homology

(resp. cohomology) of X/S with coefficients in E.

Theorem 5.1.7. Under the above assumptions, πX•/X,E and π′X•/X,E are isomorphisms in SH(S).

Proof. First we reduce to the case when X , and similarly each Xi, is reduced. We consider the
nil-immersion ν : Xred → X . The localization property of SH implies the adjunction (ν∗, ν∗)
is an equivalence. Moreover, ν∗ is right adjoint to ν∗ = ν!, so that (ν!, ν

!) is an equivalence of
categories. This implies ν∗ : ΠS(Xred,E)→ ΠS(X,E) is an isomorphism.

Let us consider πX/S,E. For any J ⊂ I , there is an isomorphism pJ !p
!
J ' p!iJ !i

!
Jp

!, where
iJ : XJ → X is the canonical closed immersion. By replacing E with p!(E), we have reduced to
the case X = S. There is, see for example [DFKJ20, B.20], a conservative family of functors

i!x : S H (X)→ S H
(

Spec(κ(x))
)
, x ∈ X

Therefore, it suffices to show i!x
(
πX•/X,E

)
is an isomorphism for all x ∈ X . Given J ⊂ I , we

consider the following cartesian square

X ′J

i′J
��

i′x // XJ

iJ
��

{x} ix // X

Proper base change for iJ implies there is an isomorphism

i!xiJ !i
!
J ' i′J !i

′!
xI

!
J

Moreover, we have
i′J !i
′!
xI

!
J ' i′J !i

′!
J i

!
x
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For the map in question, we deduce

i!x
(
πX•/X,E

)
= πX•×X{x}/{x},i!xE

We may therefore assume X = {x} is a point. In this case, since the Xi’s are closed reduced
subschemes of the reduced scheme {x}, the closed cover p : ti∈IXi → X = {x} is given by
a sum of identity maps. To proceed, one can, for example, construct an explicit homotopy
contraction of the semi-simplicial augmented pointed X-scheme

Šord
∗ (X•/{x})+ → {x}+

The proof for the map π′X•/X,E is entirely analogous. In this case, we employ, see for example
[CD19, Proposition 4.3.17], the conservative family of functors

i∗x : S H (X)→ S H
(

Spec(κ(x))
)
, x ∈ X

�

Remark 5.1.8. The proof method of Theorem 5.1.7 can be used to show the isomorphisms

(5.1.8.a) colimn∈(∆inj)op (⊕i0≤...≤inΠS(Xi0,...,in ,E)) ' ΠS(X,E)

(5.1.8.b) colimn∈(∆)op
(
⊕(i0,...,in)∈InΠS(Xi0,...,in ,E)

)
' ΠS(X,E)

The isomorphism (5.1.8.b) is a manifestation of cdh-descent for the triangulated motivic category
SH, see [CD19, Proposition 3.3.10]. In (5.1.8.b) we may replace ∆ by ∆inj since the inclusion
functor ∆inj ⊂ ∆ is final. We leave the analogous dual statements for Π′S(X,E) to the reader.

Remark 5.1.9. Theorem 5.1.7 holds more generally for any triangulated motivic category T in
the sense of [CD19, 2.4.45] which admits an ∞-categorical enhancement as in [Kha16]. As
shown in loc. cit., such an enhancement exists if T is defined via a model Sm-premotivic
structure, as in [CD19, §1.3.d]. Main examples include the motivic stable homotopy category
with coefficients (see [Ayo07b, §4.5]), the A1-derived category (see [CD19, 5.3.31]) rational (or
Beilinson) motives DMQ (see [CD19, Part IV]), étale motives DMét (see [CD16]), cdh-motives
(see [CD15]), and étale torsion and `-adic sheaves (see [LZ12] respectively [CD16, §7.2]).

Example 5.1.10. Suppose X has smooth reduced crossings over S, and let X• be the closed
cover by the irreducible components of X . Set c = ]I following Definition 5.1.1. In this case,
the isomorphism πX•/X,1S from Theorem 5.1.7 amounts to the exact homotopy sequence

(5.1.10.a) Σ∞X ′I+ → . . .
⊕

J⊂I,]J=2

Σ∞X ′J+ ⇒
⊕
i∈I

Σ∞X ′i+ → ΠS(X)

of length at most c + 1 in SH(S) (note that X ′I can be empty). For J ⊂ K there is a naturally
induced inclusion νJK : X ′K → X ′J . The face map

δkn :
⊕

K⊂I,]K=n+1

Σ∞X ′K+ →
⊕

J⊂I,]J=n

Σ∞X ′J+

in (5.1.10.a) is defined by the formula

δkn =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)∗

We obtain a similar formula when considering a twist by a virtual bundle v over X

(5.1.10.b) Σ∞ThS(vI)→ . . .
⊕

J⊂I,]J=2

Σ∞ThS(vJ) ⇒
⊕
i∈I

Σ∞ThS(vi)→ ΠS(X, v)

where vJ is the pullback of v to X ′J for J ⊂ I .
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Remark 5.1.11. Continuing with Example 5.1.10, the S-scheme X defines a sheaf of sets X on
SmS . We claim the preceding computation yields an isomorphism ΠS(X) ' Σ∞X+. A proof
uses the P1-stable A1-homotopy category SHcdh(S) over S for the big cdh site13 in the style of
[CD19, §6.1].14 Theorem 5.1.7 holds in SHcdh(S) due to cdh-descent, and then the comparison
reduces to the smooth case, which holds by the general properties of an enlargement.

Example 5.1.12. With the same assumptions as in Example 5.1.10 and following Remark 5.1.9,
the étale or rational motive MS(X) = f!f

!(1S) of X/S is isomorphic to the complex of sheaves

MS(X ′I)
dc−2−−−→ . . .

d1−−→
⊕

J⊂I,]J=2

MS(X ′J)
d0−−→

⊕
i∈I

MS(X ′i)

The differentials are given by the alternating sums di =
∑n

k=0(−1)kδkn. Equivalently, MS(X)
is the motivic complex associated with the étale sheaf (Nisnevich sheaf for rational motives)
represented by X on SmS , according to Remark 5.1.9.

This formula is a motivic relative version of the classical computation of the homology of a
normal crossing scheme. It actually gives back the known formulas by realization of motives
(Betti, étale, etc...). A dual formula, see also Theorem 5.2.1, holds for computing the relative
Chow motive hS(X) = p∗p

∗(1S), p : X → S, by considering the isomorphism π′(X•/X,1S)
of Theorem 5.1.7: hS(X) is quasi-isomorphic to the image of the preceding complex under the
(derived) internal Hom functor RHom(−,1S).

As a consequence of Theorem 5.1.7, we obtain the following generalization of a computation
due to Rappoport and Zink (see Remark 5.1.14 for details).

Corollary 5.1.13. Let i : Z → X be a closed immersion, U = X−Z and j : U → X the complementary
open immersion. For the decomposition into irreducible components Z = ∪i∈IZi we set c = ]I , ZJ =
∩j∈JZj , where ∩ is the fiber product over X , and Z ′J = ZJ,red. Assume one of the following conditions
holds:

(1) T = SHQ, DMQ, DMét, Db
c(−ét,Z`), DH(X), X is regular and D is a regular crossing sub-

scheme of X
(2) T is any of the triangulated motivic categories in Section 2, X is h-smooth over a scheme S (see

Definition 4.1.7) and Z is an h-smooth crossing subscheme of X/S
Then the object i∗j∗(1U ) of T (Z) is isomorphic to the colimit of the following augmented semi-

simplicial object of length at most c+ 1 in the underlying∞-category

νI∗Th(−NI)→ . . .
⊕

J⊂I,]J=2

νJ∗(Th(−NJ)) ⇒
⊕
i∈I

νi∗(Th−(Ni))
ε−→ 1Z

Here, NJ is the normal bundle of the regular closed immersion Z ′J → X , and the face maps are defined
by the Gysin maps

δkn =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)!

Here, (νJK)! : νK∗(Th(NK)) → νJ∗(Th(NJ)) is the Gysin map associated with the closed immersion
νKJ relative to X .15 Similarly, the Gysin maps νi! : νi∗(Th(Ni))→ 1Z for all νi : Zi → Z, i ∈ I , define

13The site of finite type S-scheme endowed with the cdh-topology.
14In the terminology of loc. cit., one gets an enlargement of motivic triangulated categories: see Definition 1.4.13.
15In fact, one can interpret νJ∗(Th(NJ)) as the twisted cohomology Π′X(ZJ , 〈NJ〉), so that (νKJ )! is the Gysin

map associated with the proper morphism of X-schemes νKJ .
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the augmentation map

ε =
∑
i∈I

νi!

Dually, in the underlying∞-category, the object i!j!(1U ) in T (U) is isomorphic to the limit of the
following augmented semi-cosimplicial object (of length at most c+ 1)

1Z →
⊕
i∈I

νi!(Th(Ni)) ⇒
⊕

J⊂I,]J=2

νJ !(Th(NJ)) . . .→ νI! Th(NI)

Proof. We note that Z ′J → X is a regular closed immersion so that the normal bundle NJ exists.
The distinguished localization triangle associated with the closed immersion i corresponds to
an exact homotopy sequence in the underlying∞-category

i!i
!(1S)→ 1S → j∗j

∗(1S) = j∗(1U )

Applying i∗ and Theorem 5.1.7 to the left-hand term, we deduce the exact homotopy sequence

colimn∈(∆inj)op
(
νJ∗i

!
J(1S)

)
→ 1Z → i∗j∗(1U )

To conclude, we use the purity isomorphism i!J(1S) ' Th(−NJ), which is absolute purity in
case of assumption (1) and the fact iJ is h-smooth in case of assumption (2) (apply 4.1.8).

The result for i!j!(1U ) follows by applying the same argument to the dual exact homotopy
sequence

j!j
!(1S)→ 1S → i∗i

∗(1S)

�

Remark 5.1.14. In the situation of Corollary 5.1.13 we consider the cases, (1) T = DMQ,DMét,
(2) T = DM, and assume Z = D is a normal crossing divisor on X . Then, in the underlying
motivic∞-category, the motive i∗j∗(1U ) is the colimit of the complex

(5.1.14.a) νI∗(1)〈c〉 dc−2−−−→ . . .
⊕

J⊂I,]J=2

νJ∗(1)〈2〉 d0−→
⊕
i∈I

νi∗(1)〈1〉 ε−→ 1D

Here, dn =
∑

k(−1)kδkn is an alternate sum of Gysin maps associated with the relevant closed
immersions. The computation for (5.1.14.a) specializes under `-adic realization to the Rapoport-
Zink formula for vanishing cycles [RZ82, Lemma 2.5]. A similar remark applies to Steenbrink’s
limit Hodge structure [Ste76], except that our computation for motives does not account for the
action of the monodromy operator.

Corollary 5.1.15. Consider the assumptions of Corollary 5.1.13, and assume in addition (in case (1))
that X be an S-scheme with projection map p̄ : X → S.

Then ΠS(U) is isomorphic to the limit of the augmented semi-simplicial diagram

(5.1.15.a) ΠS(X)
ε−→
⊕
i∈I

ΠS(Zi, 〈Ni〉) ⇒
⊕

J⊂I,]J=2

ΠS(ZJ , 〈NJ〉) . . .→ ΠS(ZI , 〈NI〉)

given by the maps

ε =
∑
i∈I

ν!
i

δnk =
∑

K={i0<...<in},J={i0<...< 6ik<...<in}

(νJK)!
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Similarly, the motive MS(U) is the limit of the augmented semi-simplical diagram

(5.1.15.b) MS(X)
ε−→
⊕
i∈I

MS(Zi)〈1〉⇒
⊕

J⊂I,]J=2

MS(ZJ)〈2〉 . . .→MS(ZI)〈c〉

with the same formulas as in (5.1.15.a) for the augmentation ε and the coface maps δnk .

Proof. Similarly to Corollary 5.1.13, inserting p!(1S) in the localization distinguished triangle
for the closed immersion i and applying p̄! yields the exact homotopy sequence

MS(U) = p̄!j!j
!p̄!(1S)→MS(X) = p̄!p̄

!(1S)→ p̄!i∗i
∗p̄!(1S)

Theorem 5.1.7 identifies the right-hand term with

lim
n∈∆inj

∑
J⊂I,]J=n+1

p̄!iJ !i
∗
J p̄

!(1S)

Under the assumptions (1), (2) we have p̄!(1S) ' Th(TX/S). Owing to purity, absolute or
relative, for the regular closed immersion iJ we deduce the isomorphism

p̄!iJ !i
∗
J p̄

!(1S) ' p̄!iJ !

(
Th(NJ)⊗ i!J p̄!(1S)

)
= ΠS(ZJ , 〈NJ〉)

The computation for MS(U) follows because motives are oriented. �

Remark 5.1.16. Suppose X/S is smooth and proper. The formula for MS(X −D), the motive of
the complement of a normal crossing divisor D of X/S, is a relative motivic analog of the de
Rham complex with logarithmic poles that Deligne used to define mixed Hodge structures. The
motive of the relative non-compact familyX−D over S is expressed as the “complex” (5.1.15.b)
whose terms are pure of weight 0 for Bondarko’s motivic weight structure. In particular, it gives
a canonical and functorial weight filtration for the motive MS(X −D) (recall that a pure object
of weight 0 shifted n times has weight n). This is a motivic analog of the fact that the weight
filtration of the mixed Hodge structure on X − D, at least when S = Spec(C), is obtained by
the naive filtration of the de Rham complex with logarithmic poles associated with (X,D).

Dually, we can identify the Chow motive hS(X) = p∗(1S) with the colimit of the diagram

(5.1.16.a) hS(DI)〈−c〉 → . . .
⊕

J⊂I,]J=2

hS(DJ)〈−2〉⇒
⊕
i∈I

hS(Di)〈−1〉 ε−→ hS(X)

When S = Spec(C), the de Rham realization of (5.1.16.a), see [CD12, §3.1], can be canonically
identified with the de Rham complex with logarithmic poles associated with (X,D).16

5.2. Strong duality. We deduce some applications of the computations in the previous section
towards strong duality results.

Theorem 5.2.1. (1) Let X be a proper scheme over S with smooth reduced crossings, and v be a
virtual bundle over X . Then ΠS(X, v) is rigid with dual HS(X,−v).

(2) Let X/S be scheme which admits a smooth proper compactification X̄ whose complement ∂X
is a smooth reduced crossing S-scheme. Then ΠS(X, v) is rigid with dual Πc

S(X,−v − TX),
where TX is the tangent bundle of X/S.

Proof. For point (1): according to Equation (5.1.10.b), ΠS(X, v) is a colimit of a finite diagram
whose components are rigid spectra (as they are given by spectra of smooth proper schemes).
This implies ΠS(X, v) is rigid. The fact that its dual is HS(X,−v) follows from Lemma 4.2.1(1).

For point (2), one applies Corollary 5.1.15 and the first assertion of Theorem 4.2.3. �

16As explained in [D1́8, Example 5.4.2(1)], this follows from the identification of the orientation of the motivic
spectrum representing algebraic de Rham cohomology.
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Remark 5.2.2. In case (1), the rigid spectrum ΠS(X, v) is isomorphic to the homotopy colimit of
the diagram

ΠS(X ′I , vI)
// . . .

//
////
⊕

J⊂I,]J=2 ΠS(X ′J , vJ) // //
⊕

i∈I ΠS(X ′i, vi)

Moreover, its dual HS(X,−v) is isomorphic to the homotopy limit of the diagram⊕
i∈I ΠS(X ′i,−vi − Ti)

// //
⊕

J⊂I,]J=2 ΠS(X ′J ,−vJ − TJ)
//
//// . . . // ΠS(X ′I ,−vI − TI)

Here, for J ⊂ I , TJ (resp. vJ ) is the tangent bundle of (resp. pullback of v over)X ′J/S. A similar
computation is valid in case (2) using Corollary 5.1.15.

Example 5.2.3. Combining (ii) with the theorem of embedded resolution of singularities shows
that for any smooth separated schemeX over a field k of characteristic 0, the spectrum Πk(X, v)
is rigid with dual Πc

k(X,−v−TX). So the above theorem vastly generalizes the case of geometric
motives from [VSF00, Chapter 5, 4.3.7].

Remark 5.2.4. When S is of positive dimension, one cannot expect all constructible spectra to be
rigid (compare with [NSØ09, Rio05]). Properness or smoothness does not ensure rigidity. For
example, letU ⊂ S be an open subscheme with non-empty complementZ. Assume i : Z → S is
h-smooth (for example Z and S are smooth over a field k). We claim that ΠS(U) = j!(1U ) is not
rigid. Assuming the contrary, its dual would be isomorphic to j∗(1U ) according to Lemma 4.2.1.
Since i∗ is monoidal, it would follow that i∗j!(1U ) is rigid with dual i∗j∗(1U ). The first spectrum
is trivial, whereas purity identifies the second one with 1Z ⊕ Th(NZS)[1] which is nontrivial.
An identical (dual) argument shows that ΠS(Z) is not rigid.

Next we show an improvement of Theorem 4.1.12.

Theorem 5.2.5. Consider a separated S-scheme X which admits a smooth compactification p̄ : X̄ → S
with tangent bundle T̄ and boundary ν : ∂X → X̄ a normal crossing S-scheme.

Then there exists a canonical isomorphism

ΠS(X̄/X) ' ΠS(∂X,−ν∗T̄ )∨

Here, ΠS(∂X,−ν∗T̄ )∨ is the dual of the rigid motive ΠS(∂X,−ν∗T̄ ) (according to Theorem 5.2.1).
Moreover, the map β′ obtained by adjunction from

β : ΠS(∂X)
ν∗−→ ΠS(X̄)→ ΠS(X̄/X) ' ΠS(∂X,−ν∗T̄ )∨

fits into the commutative diagram

ΠS(∂X)⊗ΠS(∂X,−ν∗T̄ )
β′ //

Id⊗ν∗
��

1S

ΠS(∂X)⊗ΠS(X̄,−T̄ ) '
(∗) // ΠS(∂X ×S X̄,−p∗2T̄ )

γ!
ν // ΠS(∂X)

q∗

OO

where γν is the graph of the closed immersion ν : ∂X → X̄ .

Proof. The first assertion is a combination of Theorems 4.1.12, 5.2.1. For the second assertion,
let us note that γν is a section of the smooth separated morphism Id×S p̄ : ∂X × XX̄ → ∂X .
So it is a regular closed immersion whose normal bundle is isomorphic to the tangent bundle
of Id×S p̄, that is p∗2T̄ . This justifies the existence of the Gysin map γ!

ν in 4.1.6. Secondly, the
isomorphism (∗) follows from the computation of πS(∂X) performed in Example 5.1.10 and
the Künneth isomorphism. A routine check using the definitions of the maps show that the
diagram commutes. �
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5.2.6. Theorem 5.2.5 gives a new tool for computing stable motivic homotopy types at infinity.
According to Proposition 3.2.2, Π∞S (X) is isomorphic to the homotopy fiber of the map

β : ΠS(∂X)→ ΠS(X̄/X)

Using the isomorphism in the above theorem, the commutative diagram tells us that β can be
computed as the class

(Id×Sν)∗([Γν ]) ∈ Π2d,d(∂X ×S ∂X, p∗2T̄ )

Here d is the dimension of X̄ , and [Γν ] is the fundamental class of the graph of ν in

Π2d,d(∂X ×S X̄, p∗2T̄ )

via the canonical isomorphism

[ΠS(∂X),ΠS(X̄/X)] ' [ΠS(∂X),ΠS(∂X,−ν∗T̄ )∨]

' [ΠS(∂X)⊗ΠS(∂X,−ν∗T̄ ),1S ] = Π2d,d(∂X ×S ∂X, p∗2T̄ )

The latter isomorphism is a consequence of the Künneth formula

ΠS(∂X)⊗ΠS(∂X,−ν∗T̄ ) ' ΠS(∂X × ∂X,−p∗2T̄ )

which follows from the smooth case and Example 5.1.10.

5.3. Application to stable motivic homotopy types at infinity.

5.3.1. We are ready for our main computation, following Theorem 5.1.7 and Proposition 3.2.2.
Let X/S be separable with compactification (X̄, ∂X) over S. In addition, we assume that X̄
is proper and smooth over S and ∂X is a normal crossing divisor on X̄ , see Definition 5.1.1.
We write ∂X = ∪i∈I∂iX for the decomposition of ∂X into its irreducible components, and we
consider ∂iX as a reduced subscheme of X̄ . There is a canonical closed immersion νi : ∂iX →
X̄ . For a subset J ⊂ I , we equip ∂JX = ∩j∈J∂jX with its reduced subscheme structure. There
is a canonical closed immersion νJK : ∂KX → ∂JX for subsets J ⊂ K ⊂ I .

Theorem 5.3.2. Consider the above assumptions and notations. The stable homotopy type at infinity
Π∞S (X) of X/S is canonically isomorphic to the homotopy fiber of the map

colimn∈(∆inj)op

 ⊕
J⊂I,]J=n+1

ΠS(∂JX)

 µ−→ lim
n∈∆inj

 ⊕
J⊂I,]J=m+1

ΠS(∂JX, 〈NJ〉)


Here, the direct images define the face maps in the source

δkn =
∑

K={i0<...<in},J={i0<...< 6ik<...<in}

(νJK)∗

and the Gysin maps define the coface maps in the target

δ̃ml =
∑

K={i0<...<im},J={i0<...< 6il<...<im}

(νJK)!

Moreover, µ is induced by the canonical map in degree zero

(ν!
jνi∗)i,j∈I :

⊕
i∈I

ΠS(∂iX) −→
⊕
j∈I

ΠS(∂jX, 〈Nj〉)
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Proof. According to Proposition 3.2.2, the spectrum Π∞S (X) is the homotopy fiber of the map
βX : ΠS(∂X) → ΠS(X̄,X). Theorem 5.1.7 (see Example 5.1.10) identifies µ’s source with the
desired colimit. An application of Theorems 5.2.5, 5.1.7, (see also Remark 5.2.2) identifies µ’s
target with the desired spectrum on account of the identity

〈T̄ 〉 − 〈T∂iX〉 = 〈Ni〉

between (virtual) vector bundles over ∂iX . The computation of the (co)face maps and µ follows
from the definition of the Gysin maps. �

One can suggestively summarize the computation in Theorem 5.3.2 with the diagram

⊕
i1<i2

ΠS(∂i1i2X)

����⊕
i∈I ΠS(∂iX)

µ //
⊕

j∈I ΠS(∂jX, 〈Nj〉)
����⊕

j1<j2
ΠS(∂j1j2X, 〈Nj1j2〉)


6. A MOTIVIC ANALOG OF MUMFORD’S PLUMBING GAME

6.0.1. In this section, we consider (relative) compactified smooth surfaces whose boundary is a
union of (relative) rational curves. Inspired by the technique of “plumbing” disk bundles over
manifolds, this case was first studied by Mumford [Mum61] in the context of normal surface
singularities, e.g., rational double points.

We work in the setting of 5.3.1, where S is a base scheme, X/S is a smooth family of surfaces
with a smooth proper compactification X̄/S, whose boundary ∂X = ∪i∈I∂iX is a normal
crossing divisor on X̄ (see Definition 5.1.1). We also assume that each branch ∂iX , with its
reduced schematic structure, is a rational curve over S. For each i ∈ I , we fix an S-isomorphism
εi : ∂iX → P1

S . The choice of isomorphism determines 3 distinct S-points on ∂iX , say 0, 1,∞.
For i < j in I , we let ∂ijX be the reduction of ∂iX ×S ∂jX , which is a finite étale S-scheme. We
consider the immersion νkij : ∂ijX → ∂kX , for k = i, j. Up to changing the isomorphism εi we
may assume:

(6.0.1.a) the image of εi ◦ νkij does not meet the point at infinity

6.1. Quadratic intersection degrees.

6.1.1. Recall from [DJK18] that to a regularly embedded closed subscheme i : Z → X one can
associate a fundamental class ηX(Z); it takes value in cohomotopy with support17

ηX(Z) ∈ Π0
Z(X, 〈NZX〉) := [i∗(Th(−NZX)),1X ](' H0(Z/X,−NZX))

If X and Z are smooth over the base scheme S, the said class comes via Morel-Voevodsky’s
homotopy purity theorem

pZ/X : Π0(Z) ' Π0
Z(X, 〈NZX〉), 1 7→ ηX(Z)

17This is the map (4.1.6.a) for f = i, evaluated at 1X .
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Definition 6.1.2. Let S be a base scheme, and X a smooth (proper) S-scheme. Let D ⊂ X be an
effective Cartier divisor (i.e., in our case a closed subscheme of X of pure codimension 1) and
C/S a smooth relative curve with an embedding i : C → X . We set Z̄ = D ×X C, Z = Z̄red,
and assume the following holds:

(1) The intersection of D and C in X is proper: Z̄ is finite over S
(2) The projection map f : Z → S is étale18

The (unoriented) quadratic intersection degree of D and C in X is the class

(D,C)quad = d̃eg
(
i∗(ηX(D)

)
∈ Π0(S)

Here, i∗ : Π0
D(X, 〈NDX〉) → Π0

Z(C, 〈NZC〉) is the pullback map19, f∗ : Π0(Z) → Π0(S) is the
Gysin map associated with the finite étale morphism f , see 4.1.6, and the (quadratic) degree
map is the composite

d̃eg := f∗ ◦ p−1
C/Z

In this definition’s generality, the quadratic intersection degree can be interpreted as a family
of quadratic forms. Indeed, by a pullback, one can specialize (D,C)quad ∈ Π0(S) to any point
x ∈ S of the base. This yields an element of Π0(x) ' GW(κ(x)), the Grothendieck-Witt ring of
the field κ(x) according to [Mor12].20

For certain base schemes, we can give a more concrete formula for the quadratic intersection
degree. Let us first note the following consequence of Morel’s proof of the Gersten resolution
for homotopy sheaves (and modules, see [Mor12]).

Lemma 6.1.3. If S = Spec(O) is an essentially smooth semi-local k-scheme, then there is a canonical
isomorphism21

GW(O) = Γ(S,KMW )
'−→ Π0,0(S)

The left-hand-side is the Grothendieck-Witt ring of O.

Proposition 6.1.4. Let S = Spec(O) be an essentially smooth semi-local scheme over a field k. Under
the assumptions in Definition 6.1.1, let x be a generic point of Z. We write Zx = Spec(Bx) for the
connected component of Z containing x and moreover:

• mx = lg(OZ̄,x) for the geometric multiplicity of Z̄ at x, which is the intersection multiplicity of
Z and C at x
• τx for the class in the Grothendieck-Witt ring GW(O) of the non-degenerate bilinear form

ϕx : Bx ⊗O Bx → O, x⊗ y 7→ TrBx/O(xy)

Here, TrBx/O is the trace form of the finite flat O-algebra Bx22

Then the quadratic intersection degree of D and C in X equals

(D,C)quad =
∑
x∈Z(0)

(mx)ετx ∈ Π0,0(S) ' GW(O)

Here, for an integer n > 0, we set nε =
∑n

i=1〈(−1)i+1〉.
18This is automatic if S is the spectrum of a perfect field.
19The proper intersection assumption gives a canonical isomorphism: NZC ' i∗(NDX).
20When bad reduction can occur, specializing at a point does not preserve the normal crossing divisor. Never-

theless, for good reduction, one can show that our definition of quadratic intersection degree specializes correctly.
21This is generalized to Z[1/2] and other number rings in [BØ21].
22Recall the trace form ϕ is non-degenerate if and only if Bx is étale over O.
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Proof. We note that [Fel21, Theorem 2.2.2] implies the formula

i∗ηX(D) =
∑
x∈Z(0)

(mx)εηX(Zx)

Indeed, by additivity and localisation around x, one reduces to the case where Z has a single
connected component. The conditions of loc. cit. are fulfilled with e = mx, according to our
assumptions in Definition 6.1.1. Let ν(mx) : NZC → i∗NDX be the map given by sending a local
parameter to its mx-th power. The induced map ν(mx)

∗ : Th(NZC) → Th(i∗NDX) corresponds
to the quadratic form eε under the isomorphism

[Th(NZC),Th(i∗NDX)] ' [1S ,Th(i∗NDX −NZC)] ' [1S ,1S ] ' GW(O)

Since d̃eg commutes with multiplication by (mx)ε, it suffices to check that d̃eg(ηC(Zx)) = τx. As
recalled in 6.1.1, pZx/C(ηC(Zx)) = 1; thus we are reduced to showing f∗(1) = τx, which follows
using the computation of transfer maps in [Fel20]. �

Remark 6.1.5. In particular, we have enhanced the classical notion of intersection degree to a
quadratic version; one recovers the former from the latter by taking ranks of non-degenerate
symmetric bilinear forms.

6.1.6. A merit of Definition 6.1.1 is that it dispenses with orientation conditions. To get a more
general definition, we will need such conditions. Suppose S is defined over a field k. We write
HMWZS for ring spectrum representing Milnor-Witt cohomology over S, see [BCD+20]. Recall
that a virtual bundle v over a scheme X is orientable if the line bundle det(v) is divisible by
2 in Pic(X). An orientation of v is an isomorphism τ : det(v) → L⊗,2 for some line bundle
L/X . Further, if p : X → S is an lci morphism with virtual tangent bundle τp, we say that p is
orientable if τp is orientable; an orientation of p is an isomorphism τ : ωp = det(τp)→ L⊗,2.

When p is projective of relative dimension d, one can define the Milnor-Witt degree as the
composite

d̃eg
τ

X/S : H2d,d
MW (X)

τ∗−→ H0,0
MW (X, 〈Lf 〉)

p∗−→ H0,0
MW (S)

Here, the map τ∗ is the isomorphism induced by τ , since HMWZ is SLc-orientable.
If now p = i : Z → X is a regular closed immersion of codimension n, an orientation θ of i

is an orientation of the normal bundle NZX . In that case, one defines the oriented cycle class
[Z]ΘX of Z in X as the image of ηX(Z) under the composite23

Π0
Z(X, {NZX})→ H0

MW,Z(X, 〈NZX〉)
θ∗−→ H0

MW,Z(X, 〈n〉)→ H2n,n
MW (X)

Here, the first map is induced by the unit of the ring spectrum HMWZS and the second map
forgets the support.

Definition 6.1.7. Suppose S is a k-scheme and X a finite type S-scheme. We consider a regular
closed immersion i : Z → X of codimension n such that NZX is orientable, and a morphism
f : T → X such that the projection p : T → S is lci projective, orientable and of relative
dimension n. Let θ (resp. τ ) be an orientation of i (resp. p).

The oriented quadratic intersection degree of Z along f over S is the class

(Z, T )θ,τquad = d̃egT/S(f∗[Z]ΘX) ∈ H0,0
MW (S).

23Equivalently, when X is smooth it is the image of 1 under the composite map

C̃H
0
(Z)

Θ∗−−→ C̃H
0
(Z, det(NZX))

i∗−→ C̃H
0
(X)
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Though all the previous notions depends on the chosen orientations, we will sometimes simply
write [Z]orX , d̃eg

or

X/S , (Z, T )orquad, the chosen orientation being intended.

In the case where S = Spec(O) is semi-local essentially smooth over k, as explained in
Lemma 6.1.3, the class (Z, T )orquad leaves in GW(O).

Example 6.1.8. We consider the notations of the previous definition.
(1) We assume that f : X → S is smooth projective and oriented, of dimension 2n, Z and

T are closed regular subschemes of X of codimension n, whose normal bundles are
oriented. In this case, the oriented cycle class defined in 6.1.6 are elements [Z]orX , [T ]orX in
the Chow-Witt group C̃H

n
(X). Then the projection formula gives the following more

symmetric formula for the oriented quadratic intersection degree:

(Z, T )orquad = d̃eg
or

X/S([Z]orX .[T ]orX )

using the intersection product of C̃H
n
(X) (hint: use the projection formula).

(2) Assume that Z = T . Then according to the excess intersection formula [DJK18, Propo-
sition 3.3.4], we get:

(Z,Z)orquad = d̃egZ/S
(
eor(NZX)

)
where eor(NZX) ∈ H2n,n

MW (Z) is the Euler class of the oriented vector bundle NZX .

6.2. A universal homotopical formula.

6.2.1. We follow the setting of 6.0.1. Theorem 5.3.2 shows ΠS(∂X) is the homotopy cofiber of
the canonical map

d =
∑
i<j

νiij∗ − ν
j
ij∗ :

⊕
i<j

ΠS(∂ijX)→
⊕
i∈I

ΠS(∂iX)

Moreover, we consider the isomorphism

(6.2.1.a) ε =
∑
i∈I

εi∗ :
⊕
i∈I

ΠS(∂iX)→
⊕
i∈I

1S ⊕
⊕
i∈I

1S(1)[2]

The following lemma is immediate.

Lemma 6.2.2. The composite ε ◦ d factors through the inclusion of the direct summand
⊕

i∈I 1S on the
right-hand-side of (6.2.1.a). Moreover, the factorization coincides with the map

(6.2.2.a) p =
∑
i<j

piij∗ − p
j
ij∗ :

⊕
i<j

ΠS(∂ijX)→
⊕
i∈I

1S

Here, pij : ∂ijX → S is the canonical projection (a finite étale map), and for k = i, j, we have written
pkij∗ for the projection on the k-th factor of the right hand-side. In particular, if DX is the homotopy
cofiber of p, there is a canonical isomorphism

ΠS(∂X) ' DX ⊕
⊕
i∈I

1S(1)[2]

One can interpret the decomposition by saying that ΠS(∂X) is a sum of the combinatorial
part DX , which is a smooth Artin motivic spectrum24 and the “geometric” part ⊕i∈I1S(1)[2].

24By analogy with the case of motives, it is the smallest∞-category containing ΠS(V ) for V/S finite étale, and
stable under suspensions, homotopy (co)fibers.
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6.2.3. Owing to Theorem 5.3.2, we can identify ΠS(X̄/X) with the homotopy fiber of the map

d2 =
∑
i<j

νi!ij − ν
j!
ij :
⊕
j∈I

ΠS(∂jX, 〈Nj〉)→
⊕
j<k

ΠS(∂jkX, 〈Njk〉)

Here, Nj (resp. Njk) denotes the normal bundle of ∂jX (resp. ∂jkX) in X̄). The isomorphism
∂jX ' P1

S reduces to considering the homotopy type of P1
S twisted by the line bundle on P1

S
corresponding to Nj (which is determined by its degree).

Proposition 6.2.4. Let w be a virtual vector bundle on P1
S and write w′ = j∗(w) for the canonical open

immersion j : A1
S → P1

S . Suppose w′ is constant, i.e., there exists a virtual vector bundle w0 on S such
that w′ = π∗(w0), where π : A1

S → S is the projection.25

Then the exact homotopy sequence

ΠS(A1
S , w

′)
j∗−→ ΠS(P1

S , w)→ ΠS(P1
S/A

1
S , w)

is canonically isomorphic to

(6.2.4.a) Th(w0)
s0∗−−→ ΠS(P1

S , w)
s!∞−−→ Th(w∞)(1)[2]

Here, w∞ is the restriction of w along the section s∞ of P1
S at∞, and s!

∞ denotes the associated Gysin
morphism.

Assume also that S = Spec(O) is a semi-local essentially smooth scheme over a field k. Then the
unit η : 1S → KMW

∗ of the homotopy module representing Milnor-Witt K-theory over S induces an
isomorphism

η∗ : [ΠS(P1
S , w),Th(w0)] = Π0(P1

S , w − π̄∗(w0))
'−→ C̃H

0
(P1

S , L)

The right-hand-side is the Chow-Witt group of P1
S twisted by the line bundle

L = det(w)⊗ π̄∗(det(w0))−1

It follows that (6.2.4.a) splits if and only if w is oriented (see 6.1.6), which amounts to assuming w is an
even line bundle on P1

S .26 Moreover, any choice of orientation of w yields an isomorphism

[ΠS(P1
S , w),Th(w0)] ' GW(O)

and therefore a splitting of (6.2.4.a) so that

ΠS(P1
S , w) ' Th(w0)⊕ Th(w∞)(1)[2]

Proof. The first statement follows by combining our generalized form of the homotopy purity
theorem, see Theorem 5.2.5, and the observation that the isomorphisms

Th(w0) = ΠS(S,w0)
σ0∗−−→ ΠS(A1

S , w
′)

ΠS(A1
S , w

′) ' ΠS(A1
S , π

∗(w0))
π∗−→ ΠS(S,w0) = Th(w0)

are mutually inverse to each other (due to our assumption on w′).

For the second statement we apply the natural transformation [−, η] to the exact homotopy
sequence (6.2.4.a). This yields a commutative diagram of exact sequences of abelian groups

25This holds if S is regular by homotopy invariance of K-theory of regular schemes. Note that w0 is always
isomorphic to the restriction of w over the S-point zero.

26That is, w is isomorphic to O(2n).
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(see [Fel20, 2.2.3] for Nisnevich cohomology of the twisted Milnor-Witt sheaf in degree −1)

0 // Π0(P1
S , w − π̄∗w0)

s∗0 //

η∗ ��

Π0(S, 0)
s∞∗ //

'��

Π−1,−1(S,w∞ − w0)

'
��

0 // C̃H
1
(P1

S , L)
s∗0 // C̃H

0
(S)

s∞∗ // H0(S,KMW
−1 {LS})

The middle isomorphism follows since both groups are isomorphic to GW(O) by Lemma 6.1.3,
and the right-most isomorphism between copies of W (O) follows the same argument (Morel’s
proof of Gersten’s conjecture for homotopy sheaves). Therefore, η∗ is an isomorphism.

Now, if w is π̄-oriented, L being a square and C̃H
∗

being SLc-oriented, one gets for a choice
of an SLc-orientation of L the required canonical isomorphism

C̃H
1
(P1

S , L) ' C̃H
1
(P1

S) ' GW(O)

according to [Fas13, 11.7] for the second isomorphism. If L is odd, then, again by loc. cit., there

is an isomorphism C̃H
1
(P1

S , L) ' W(O), and s∞∗ is isomorphic to the canonical projection
h : GW(O)→W(O). Thus the quadratic form 〈1〉 cannot be in the image of s∗0.27 �

6.2.5. In the setting of 6.0.1 we assume in addition:
(1) S = Spec(O) is essentially smooth semi-local over a field k
(2) For each j ∈ I , the normal bundleNj is relatively orientable over ∂jX/S, and we choose

such an isomorphism oj : Nj ⊗ ω∂jX/S ' L⊗2

Owing to Proposition 6.2.4 we deduce a canonical isomorphism

ε−1
2 :

⊕
j∈I

ΠS(∂jX, 〈Nj〉)→
⊕
j∈I

Th(N0
j )⊕

⊕
j∈I

Th(N∞j )(1)[2]

We use this to show the following analog of Lemma 6.2.2.

Corollary 6.2.6. The composite map⊕
j∈I

Th(N0
j )⊕

⊕
j∈I

Th(N∞j )(1)[2]
ε2−→
⊕
j∈I

ΠS(∂jX, 〈Nj〉)
d2−→
⊕
j<k

ΠS(∂jkX, 〈Njk〉)

factors through the inclusion of the second factor of the left-hand-side. Moreover, via this factorization,
it corresponds to the morphism

p2 =
∑
j<k

pj!jk − p
k!
jk :

⊕
j∈I

Th(N∞j )(1)[2]→
⊕
j<k

ΠS(∂jkX, 〈Njk〉)

Here, pjk : ∂jkX → S is the canonical projection (a finite étale map), for l = j, k, pl!jk is the composition
of the inclusion of the l-th factor of the left hand-side with the obvious Gysin morphim, and we have
identified the twists 〈p−1

jk N
∞
j ⊕A1〉 and 〈Njk〉 (as rank two virtual bundles over a semi-local scheme).

In particular, the motivic spectrum ΠS(X̄/X) is isomorphic to

D′X ⊕
⊕
j∈I

Th(N0
j )

Here, D′X is the homotopy fiber of p2.

We can now refine Theorem 5.3.2 with the help of Lemma 6.2.2 and Corollary 6.2.6.

27If O = k is a quadratically closed field, the map h is multiplication by 2 on Z.
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Theorem 6.2.7. In the setting of 6.0.1 and 6.2.5, the stable motivic homotopy type at infinity Π∞S (X)
is the homotopy fiber of the map

β : DX ⊕
⊕
i∈I

1S(1)[2]→ D′X ⊕
⊕
j∈I

Th(N0
j )

given by the matrix (
a b′

b µ

)
The map µ :

⊕
i∈I 1S(1)[2]→

⊕
j∈I Th(N0

j ) is computed by the “quadratic Mumford matrix”

(µij)1≤i,j,≤n

defined by the composite

(6.2.7.a) µij : 1S(1)[2]
ιi
↪→ ΠS(∂iX)

νi∗−−→ ΠS(X̄)
ν!
j−→ ΠS(∂jX, 〈Nj〉)

πj
� Th(N0

j )

Here, ιi (resp. πj) is the (canonical) split monomorphism (resp. epimorphism) in the isomorphism ε1
(resp. ε2) of Lemma 6.2.2 (resp. 6.2.5). Moreover, if one chooses a trivialization of N0

j over S, µij
becomes an element of GW(O) such that

µij = (∂jX, ∂iX)orquad

Here, we use the natural orientation of the tangent space of ∂iX
εi' P1

k (that is, OP1
k
(2)) and

the chosen orientation of Nj to define the oriented quadratic intersection degree on the right
hand-side (see Definition 6.1.7). Our identification of µij follows from the definitions: ν!

j is
essentially determined by the fundamental class ηX̄(∂jX), and the composition with νi∗ is to
be understood as the pullback by νi in the homotopy category.

6.3. Triangulated and abelian mixed motives.

6.3.1. The motive of a Thom space depends only on the rank of the vector bundle, i.e., for
Λ-linear motives we do not need to assume normal bundles are relatively oriented. Thus the
motive at infinity M∞(X) – or Wildeshaus’ boundary motive – is the homotopy fiber of the
canonical map

M(∂X)→M(∂X)∨(2)[4]

associated with the fundamental class of the diagonal of ∂X/S (see Theorem 5.2.5). Let DMX
be the smooth Artin motive over S defined as the homotopy cofiber of (6.2.2.a) seen as a rigid
object in DM(S,Λ). Theorem 5.3.2 implies the next result.

Theorem 6.3.2. In the setting of 6.0.1, the motive at infinity M∞S (X) of the relative surface X/S is the
homotopy fiber of the map

β : DMX ⊕
⊕
i∈I

1S(1)[2]

(
a b∨(2)[4]
b µ

)
−−−−−−−−−−−→ (DMX )∨(2)[4]⊕

⊕
j∈I

1S(1)[2]

Moreover, µ is given by the matrix (µij)i,j∈I where

µij = deg(ν∗i (ηX̄(∂jX)) ∈ H00
M (S,Λ)

Here, the quadratic intersection degree is an integer, µij ∈ Z, in the following cases:
• S is regular connected and Λ = Q (use [CD19])
• S is smooth connected over a field or a Dedekind ring and Λ = Z (use [Spi18])
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Note that M∞S (X) is a triangulated mixed and smooth Artin-Tate motive. Next we relate the
above to the motivic t-structure, which exists for rational coefficients Λ = Q when:

• S = Spec(K), K is a finite field, or a global field (see [Lev93])
• S = Spec(OK), OK is a number ring (see [Sch11])

The homology motive at infinity of X/S in the abelian category of Artin-Tate mixed motives
MMAT(S,Q) is defined by

H∞i (X) := Hµ
i (M∞S (X))

where Hµ
i is the i-th homology functor for the motivic t-structure (with standard homological

conventions).

Corollary 6.3.3. In the notation of Theorem 6.3.2, the homology motive at infinity H∞i (X) vanishes for
i 6∈ [0, 3] and there is an exact sequence in the abelian category MMAT(S,Q)

0→H∞3 (X)→
⊕
i∈I

1S(2)

∑
i<j p

i!
ij−p

j!
ij−−−−−−−−→
⊕
i<j

MS(∂ijX)(2)

→ H∞2 (X)→
⊕
i∈I

1S(1)
µ−−→
⊕
j∈I

1S(1)

→ H∞1 (X)→
⊕
i<j

MS(∂ijX)

∑
i<j p

i
ij∗−p

j
ij∗−−−−−−−−−→

⊕
i∈I

1S → H∞0 (X)→ 0

where µ is the Mumford matrix, and MS(∂ijX) = Hµ
0 (MS(∂ijX)) is seen as an abelian Artin-Tate

motive.

Note in particular that H∞0 (X) and H∞3 (X) are pure of respective weights 0 and −4, while
H∞1 (X) and H∞2 (X) are in general mixed of weights {0,−2} and {−2,−4}, respectively.

6.4. Three general lines in projective plane. Over a field k, let L1, L2, L3
∼= P1

k be three general
lines in P2

k. Let σ : X̄ → P2
k be the surface obtained by blowing-up one k-rational point on each

of the linesLi distinct from the k-rational points p12 = L1∩L2, p13 = L1∩L3, p2,3 = L2∩L3. Then
X̄ is a del Pezzo surface of degree 6 and the proper transform ∂X of L1 ∪ L2 ∪ L3 on X̄ a strict
normal crossing divisor; it is the support of an anti-canonical divisor on X̄ and thus an ample
divisor. We now compute the homology motive at infinity of the affine surface X = X̄ − ∂X .
In the exact sequence of Corollary 6.3.3 the homomorphisms

⊕
i<jMk(∂ij(X)) ∼=

⊕3
i=1 1k →⊕

i∈I 1k
∼=
⊕3

i=1 1k and
⊕

i∈I 1k(2) ∼=
⊕3

i=1 1k(2) →
⊕

i<jMk(∂ij(X))(2) ∼=
⊕3

i=1 1k(2) are
given respectively by the matrix

N =

 1 1 0
−1 0 1
0 −1 −1


and its transpose. Moreover, sinceLi has trivial normal bundle in X̄ for i = 1, 2, 3, the quadratic
Mumford intersection matrix equals

µ =

 0 〈1〉 〈1〉
〈1〉 0 〈1〉
〈1〉 〈1〉 0
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The matrix N ∈ M3,3(Z) is equivalent to the diagonal matrix diag(1, 1, 0) and the matrix µ in
M3,3(GW(k)) is equivalent to the diagonal matrix diag(1, 1, 2). In summary, the above yields

H∞i (X) =


1k i = 0
(1k/2)(1)⊕ 1k i = 1
1k(2) i = 2
1k(2) i = 3

6.5. Danielewski hypersurfaces. For a field k and n ≥ 1, the Danielewski hypersurface Dn is
the smooth affine surface Dn in A3

k cut out by the equation xnz = y(y − 1). Owing to [Dan88],
Dn becomes a Zariski locally trivial Ga-bundle over the affine line with two origins Ă1

k (using
the factorization of the surjective projection πn = prx : Dn → A1

k). Thus Dn is A1-equivalent
to Ă1

k and P1
k. The threefolds Dn × A1

k are isomorphic, but the surfaces Dn are pairwise non-
isomorphic. Over C, Danielewski [Dan88], Fieseler [Fie94] established this by showing the
underlying complex analytic manifolds have non-isomorphic first singular homology groups at
infinity. Our methods provide a base field independent argument which allows to distinguish
between the Dn’s via homology motives at infinity.

We begin by constructing explicit smooth projective completions D̄n of the surfaces Dn,
whose boundaries are strict normal crossing divisors. The morphism ϕn = prx,y : Dn → A2

k

expresses Dn as the affine modification of A2
k with center at the closed subscheme Zn with

ideal (xn, y(y− 1)) and divisor Dn = div(xn), cf. [DPØ19]. Furthermore, ϕn decomposes into a
sequence of affine modifications

(6.5.0.a) ϕn = ϕ1 ◦ ψ2 · · · ◦ ψn : Dn → Dn−1 → · · ·D2 → D1 → A2
k

given by ψ` : D` → D`−1; (x, y, z) 7→ (x, y, xz), with center at the closed subscheme Y`−1 =
(x, z) and divisor H` = div(x). That is, ϕ1 : D1 → A2

k is the birational morphism obtained by
blowing-up the points (0, 0), (0, 1) in A2

k and removing the proper transform of {0} ×A1
k, and

ψ` : D` → D`−1 is the birational morphism obtained by blowing-up the points (0, 0, 0), (0, 0, 1)

in π−1
` (0) and removing the proper transform of π−1

`−1(0).
Now consider the open embedding A2

k ↪→ P1
k×P1

k; (x, y) 7→ ([x : 1], [y : 1]). ThenC∞ = P1
k×

[1 : 0] and F∞ = [1 : 0]×P1
k are irreducible components of P1

k×P1
k and we set F0 = [0 : 1]×P1

k.
Let ϕ̄1 : D̄1 → P1

k × P1
k be the blow-up of the points ([0 : 1], [0 : 1]), ([0 : 1], [1 : 1]) in F0, with

respective exceptional divisors E1,0, E1,1. From now on the proper transform of F0 in D̄1 is also
denoted by F0. With these definitions, there is a commutative diagram

D1

ϕ1

��

// D̄1

ϕ̄1

��
A2 // P1 ×P1

Here, D1 ↪→ D̄1 is the open immersion given by the complement of the support of the strict
normal crossing divisor ∂D1 = C∞ ∪ F∞ ∪ F0. The closures in D̄1 of the two irreducible
components {x = y = 0} and {x = y− 1 = 0} of π−1

1 (0) equal the exceptional divisors E1,0 and
E1,1, respectively. We calculate the self-intersection numbers C2

∞ = F 2
∞ = 0, F 2

0 = −2 in D̄1;
that is, the usual degrees of the respective normal line bundles of these curves in D̄1, see e.g.,
[GH94, Chapter 5.6], [Sha13, Chapter IV].

To construct D̄n, n ≥ 2, we start with D̄1 and proceed inductively by performing the same
sequence of blow-ups as for the affine modifications ψ` : Dl → D`−1 in (6.5.0.a). This yields
birational morphisms ψ̄` : D̄` → D̄`−1 consisting of the blow-up of one point on E`,0 − E`−1,0
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and another point on E`,1 − E`−1,1 with respective exceptional divisors E`+1,0 and E`+1,1 (by
convention E0,0 = E0,1 = F0). Moreover, D` embeds into D̄` as the complement of the support
of the strict normal crossing divisor ∂D` = C∞ ∪ F∞ ∪ F0 ∪

⋃`−1
i=1(Ei,0 ∪ Ei,1) in such a way

that the closures of the two irreducible components {x = y = 0} and {x = y − 1 = 0} of
π−1
` (0) coincide with the divisors E`+1,0 and E`+1,1, respectively. By construction, there is a

commutative diagram

D̄`
ψ̄` // D̄`−1

// · · · // D̄2
ψ̄2 // D̄1

ϕ̄1 // P1 ×P1

D`
ψ` //

OO

D`−1
//

OO

· · · // D2
ψ2 //

OO

D1
ϕ1 //

OO

A2

OO

For every n ≥ 2, we may visualize the boundary divisor ∂Dn as a fork of P1’s

(E1,0,−2) · · · (En−1,0,−2)

(F∞, 0) (C∞, 0) (F0,−2)

(E1,1,−2) · · · (En−1,1,−2)

with the indicated self-intersection numbers for each irreducible component. We may order
the irreducible components of ∂Dn as follows

F∞ < C∞ < F0 < E1,0 < . . . < En−1,0 < E1,1 < . . . < En−1,1

The Euler class of OP1(2) equals the hyperbolic plane H = 〈1,−1〉 ∈ GW(k). Thus the Euler
class of OP1(−2) is −H. Moreover, by Proposition 6.1.4, the transversal intersection of two
copies of P1 in a unique k-rational point yields the class 〈1〉 ∈ GW(k). The quadratic Mumford
intersection matrix thus takes the form (with zero entries mostly left out of the notation)

µn =



0 〈1〉
〈1〉 0 〈1〉

〈1〉 −H 〈1〉 0 〈1〉
〈1〉 −H 〈1〉

0 〈1〉 . . . 〈1〉
〈1〉 −H 0

〈1〉 0 −H 〈1〉

〈1〉 . . . 〈1〉
〈1〉 −H


Proposition 6.5.1. Over a field k and n ≥ 1, the homology motives at infinity of the Danielewski
surfaces Dn are given by

H∞i (Dn) =


1k i = 0
(1k/2n)(1) i = 1
0 i = 2
1k(2) i = 3
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Proof. The boundary ∂Dn has 2n + 1 irreducible components which intersect in 2n k-rational
points. As in Example 6.4, one infers from the description of ∂Dn that the homomorphism

⊕
i<j

Mk(∂ij(Dn)) ∼=
2n⊕
i=1

1k →
⊕
i∈I

1k
∼=

2n+1⊕
i=1

1k

is given by an element N of M2n,2n+1(Z) equivalent to I2n. This implies that H∞0 (Dn) = 1k

and H∞1 (Dn) = Coker(µn). Since the homomorphism

⊕
i∈I

1k(2) ∼=
2n+1⊕
i=1

1k(2)→
⊕
i<j

Mk(∂ij(Dn))(2) ∼=
2n⊕
i=1

1k(2)

is given by the transpose of N , it follows that H∞3 (Dn) = 1k(2) and H∞2 (Dn) = Ker(µn).
Finally, one can check by elementary transformations on rows and columns that as an element
ofM2n+1,2n+1(GW(k)), the quadratic Mumford matrix µn is equivalent to the diagonal matrix
diag(1, . . . , 1, nH). This implies in turn that H∞2 (Dn) = 0 and H∞3 (Dn) = (1k/2n)(1). �
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(Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
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[CD12] D.-C. Cisinski and F. Déglise, Mixed Weil cohomologies, Adv. in Math. 230 (2012), no. 1, 55–130.
[CD15] , Integral mixed motives in equal characteristics, Doc. Math. (2015), no. Extra volume: Alexander S.

Merkurjev’s sixtieth birthday, 145–194.
[CD16] , Étale motives, Compos. Math. 152 (2016), no. 3, 556–666.
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