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Introduction

Helpful readings for the first and second talks.

• basic algebraic geometry: [Har66], Chap. I, II, III, appendix A could help
• basic intersection theory: [Ful98], Chap. 1, 6, 7, 16, 19
• homological algebra: [GM03], Chap. 1-5
• basic algebraic topology:[Swi02], Chap. 0-5

For further helpful readings:

• Serre’s Tor formula: [Ser00]
• general introduction to motivic homotopy theory: [DLOsr+07]
• the introduction of [CD19] could help.

Conventions

We fix a base scheme S, assumed to be regular and noetherian for explicit
definitions.1

By convention, smooth S-schemes will mean smooth separated of finite type
S-schemes. We let SmS be the category of such smooth S-schemes. An essentially
smooth morphism of schemes is a projective limit of smooth morphisms where the
transition maps are affine and étale.

A closed pair (X,Z) is a pair of schemes such that Z is a closed subset of X.
Such a pair is said smooth (resp. essentially smooth) over a base scheme S if
both X and Z are so. The codimension of (X,Z) is the codimension of Z in
X. A morphism of closed pairs p : (Y, T ) → (X,Z) is a morphism of schemes
p : Y → X such that T = p−1(Z) as topological spaces. The morphism p is said
to be cartesian if T = p−1(Z) as schemes, and excisive if in addition the induced
map p|ZT : T → Z is an isomorphism.

Given S-schemes X, Y , Z, ... we sometime denote

XY Z... = X ×S Y ×S Z...
their fiber product.

For a scheme X, and an integer n, X(n) denotes the set of points x ∈ X of
codimension n: dim(OX,x) = n.

We do not base category theory on the Bernays-Gödel class axiomatic. Instead,
we use ZFCU and assume that our categories are sets in a fixed universe.

We use the model of quasi-categories for our ∞-categories, and use [Lur09] as a
reference book (see for example [Gro20] as an introduction).

1One can work with non-regular schemes: see [CD19, Part III]. Note however that the theory
gets much more powerful when S is the spectrum of a perfect field due to Theorem 2.12.
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1. Homotopy sheaves and transfers

1.1. The aim of Voevodsky’s theory is to get a good notion of ”motivic coeffi-
cients”, based on the formalism of torsion and `-adic sheaves. Voevodsky’s theory
is based on three main variations compared to SGA4:

• (algebraic cycles) sheaves admit transfers
• (topos theoretic) one uses the (big) smooth Nisnevich site
• (algebraic topology inspiration) one uses the A1-homotopy relation

The material in this part is based on the expository text [Dég07]. The whole
theory and overall strategy of proof is due to Voevodsky, with some simplifications
introduced in loc. cit.

1.1. Finite correspondences. The next definition is inspired by the classical
notion of algebraic correspondences, abundantly used by the mathematicians of
the italian school as a way of enlarging morphisms of varieties modulo rational
equivalence, and at the base of the theory of pure motives — modulo an adequate
equivalence relation: see [And04, 3.1].

Definition 1.2. Let X, Y be smooth S-schemes. A finite correspondence from
X to Y is an algebraic cycle α =

∑
i ni.[Zi]XY in X ×S Y whose irreducible

components Zi are finite and dominant over a connected component of X.2

These finite correspondences form an abelian group that we denote by c(X, Y ).

Example 1.3.

(1) Let f : Y → X be a morphism in SmS. Define Γf the graph of f defined
by the pullback square:

Γf //

��

Y ×S X
f×S1X��

X
δ // X ×S X,

where δ is the diagonal immersion of X/S, which is a closed immersion as
X/S is separated. Thus Γf is a closed subscheme of Y X and the associated
algebraic cycle [Γf ]Y X defines a finite correspondence from Y to X

(2) Consider the notation of the previous point. Assume in addition that
f is finite equidimensional.3 Let ε : Y X → XY be the automorphism
permuting the factors. Then ε∗([Γf ]) defines a finite correspondence from
X to Y denoted by t f : the transpose of f .

The interest of finite correspondences is that they can be composed, without
requiring an equivalence relation on algebraic cycles (see [Dég07, 1.15, 1.16]).

2One can also say that the support of α, Supp(α) = ∪iZi is finite and equidimensional overt
X.

3For example, this rules out the case of closed immersion.
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Proposition 1.4. Let X, Y , Z be smooth S-schemes, and (α, β) ∈ c(X, Y ) ×
c(Y, Z) be a pair of finite correspondences. We consider pXYXY Z : XY Z → XY , and
so on, the canonical projection.

(1) the algebraic cycles pXY ∗XY Z(α) and pY Z∗XY Z(β) intersects properly in XY Z, so
that their intersection product γ is well-defined using Serre’s Tor-formula.

(2) The support T of γ is finite over X, so that the induced morphism

q = pXZXY Z |T : T → pXZXY Z(T )

is finite and the algebraic cycle

q∗
(
pXY ∗XY Z(α).pY Z∗XY Z(β)

)
defines a finite correspondence, denoted by β ◦ α.

Example 1.5. Let f : Y → X be a finite surjective morphism between connected
smooth S-schemes. We let d be the degree of the induced morphism on function
fields.4 Then one gets the degree formula:

f ◦ t f = deg(f). IdX ,

where IdX is the finite correspondence corresponding to the diagonal of X/S.

One can check that the bilinear operator (− ◦ −) on finite correspondences
defined above is associative, and that the graph of the identity is a neutral element:
see [Dég07, 1.18]. Therefore:

Definition 1.6. We let Smcor
S be the category whose objects are smooth S-schemes

and whose morphisms are finite correspondences. We call it the category of smooth
correspondences over S.

It is easy to check that Smcor
S is additive. The direct sum, or equivalently product,

of objects being given by the coproduct of the underlying S-schemes.

1.7. Graph functor. Example 1.3(1) allows to define a map:

HomSmS
(X, Y )→ c(X, Y ), F 7→ [Γf ]XY

which can be checked to be compatible with composition. Therefore, this defines
a faithful functor γ : Sm→ Smcor which is the identity on objects.

Remark 1.8. It is possible to extend all the definitions of this section to arbitrary
(noetherian) bases. In the case of a possibly singular base5 S, one can define finite
correspondences from X to Y (and actually, there is no need to assume X and Y
smooth anymore) as algebraic cycles α in XY whose support is finite equidimen-
sional over X, but one has to consider further restriction on these algebraic cycles:
namely α must be special and universally integral over X in the terminology of
[CD19, III, 8.1.28, 8.1.49]. Then, all the theory goes through: see [CD19, Sec. 9].

4This is also the cardinal of any fiber of f . Remember f is finite equidimensional.
5actually the problems occur more precisely for non-geometrically unibranch schemes
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1.9. Further operations. One can define three more operations on the categories
of smooth correspondences.

• Tensor product. Smcor
S is symmetric monoidal. The tensor product on

object is the cartesian product over S, and on finite correspondences, it is
induced by exterior product of algebraic cycles.
• Let f : T → S be an arbitrary morphism. One defines a base change

functor: f ∗ : Smcor
S → Smcor

T , X 7→ X ×S T , using a pullback operation on
finite correspondences.
• Let p : T → S be a smooth morphism. One defines a forgetting the base

functor: p] : Smcor
T → Smcor

S , Y/T 7→ Y/S, using a direct image operation
on finite correspondences.

This is a blueprint of the six operations ! We refer the reader to [Dég07, Sections
4.1.3 and 4.1.5] for details.

1.2. Transfers.

Definition 1.10. A presheaf with transfers over S is an additive functor F :
(Smcor)op → A b. We denote by PShtr(S) the category of presheaves with transfers,
with natural transformations of additive functors as morphisms.

Note in particular, that such a presheaf is equiped with a specific operation,
called the transfer : for a finite equidimensional morphism f : Y → X in SmS, one
gets:

f∗ = F (t f) : F (Y )→ F (X).

Example 1.11. (1) The multiplicative group Gm defines a presheaf with trans-
fers over S.

(2) Let A be an abelian variety over a field k. Then A : X 7→ Hom(X,A)
defines a presheaf with transfers over k (see [Org04]).

(3) Let k be a field, and H∗ be a mixed Weil cohomology: Betti cohomol-
ogy, De Rham cohomology in characteristic 0, rigid cohomology in positive
characteristic, `-adic étale cohomology in any characteristic p 6= l.6 Then
for any smooth k-scheme S, the presheaf X 7→ Hn(X) defines a presheaf
with transfers over S. This follows from the existence of the cycle class
map.

(4) Let ` be a prime number and S a regular Z[1/`]-scheme, and n an integer.
For any scheme X, put Hn(X) = H2n

ét (X,Λ(n)) where Λ = Z` in the
pro-étale topology of Λ = Z/ln in the étale topology. Then X 7→ Hn(X)
defines a presheaf with transfers over S, with the same justification as in
the previous point.7

6See [CD12] for an axiomatic definition.
7More conceptually, one can use the arguments of [CD16, Section 7.2].
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Remark 1.12. Unlike in point (3) and (4) of the above example, K-theory does
not define a presheaf with transfers over a regular base. However, one can show
that the associated Nisnevich sheaf, the so-called unramified K-theory, does define
a presheaf with transfers (at least over a field).

1.13. Structures on presheaves with transfers. The advantage of using presheaves,
as abundantly showed by topos theory, is to enlarge the category of smooth cor-
respondences via the Yoneda embedding:

Smcor → PShtr(S), X/S 7→ c(−, X) := Ztr
S (X)

which is fully faithful. On the other hand, PShtr(S) is abelian (even Grothendieck
abelian), complete and cocomplete. Moreover, it is possible to extend the opera-
tions of 1.9 - and the functors automatically aquire left adjoints. We will make an
explicit statement for sheaves with transfers.

1.14. Nisnevich topology. Recall that a Nisnevich cover of a scheme X is a family
(pi : Wi → X)i∈I of étale morphism such that for any x ∈ X, there exists i ∈ I
and w ∈ Wi such that pi(w) = x and the induced residual extension κ(w)/κ(x) is
trivial.

An important property of the Nisnevich topology is that it is finitely generated.
More precisely, one defines a Nisnevich distinguished square as a cartesian diagram

W
q //

k �� ∆

V
p��

U
j
// X

in SmS such that j is an open immersion say with reduced closed complement Z,
p is étale and induces an isomorphism p−1(Z) → Z; i.e. the map p induces an
excisive morphism (V, p−1Z)→ (X,Z) of closed pairs.

Lemma 1.15. Let F be an abelian presheaf over SmS. Then F is a sheaf for the
Nisnevich topology if and only if for any Nisnevich distinguished square ∆, the
square of abelian groups F (∆) is cartesian.

See [MV99, Prop. 1.4].

Remark 1.16. The lemma holds for sheaves of sets. From the cohomological point
of view, one gets a stronger property which can be summarized by saying that the
simplicial objects associated with the semi-simplicial smooth S-scheme

W
q //
k
// U t V

j //
p
// X

generates Nisnevich hyper-covers. This is expressed by the Brown-Gersten prop-
erty and theorem. See [MV99, Def. 1.13, Prop. 1.16 p. 100], or for a more elegant
statement [AE17, 3.53].
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Definition 1.17. A sheaf with transfers is a presheaf with transfers F such that
F ◦ γ is a Nisnevich sheaf. We denote by Shtr(S) the full category of PShtr(S)
made by sheaves with transfers.

Example 1.18. (1) Let X be a smooth S-scheme. Then Ztr
S (X) is in fact a

sheaf with transfers. In particular, one gets a Nisnevich-local Yoneda (fully
faithful) embedding:

Smcor → Shtr(S), X 7→ Ztr
S (X).

(2) Considering the notations of 1.11, Gm (resp. A) is a sheaf with transfers
over S (resp. k). Examples (3) and (4) do not provides sheaves: the
associated Nisnevich sheaf is 0 except if n = 0, in which case one in fact
get the sheaf with transfers Ztr

S (S) — equivalently the constant sheaf of
abelian groups associated with Z.

1.19. Link between small and big site. The small Nisnevich site XNis over a scheme
X is given by the category of étale X-scheme (which we can take separated of finite
type). The smooth site SmS is a ”big” site in the following sense. Give a Nisnevich
sheaf F on SmS is equivalent to give for each smooth S-scheme X a sheaf FX over
XNis and for each morphism f : Y → X in SmS a map

τf : f ∗(FY )→ FX

which is not an isomorphism in general, and measure the ”defect of base change”
— this situation is customary in the theory of crystalline sheaves. In particular,
the category of sheaves on SmS is much bigger than the category of sheaves on
SNis.

Example 1.20. Let F be an étale sheaf on Sét = SNis. Following the above
interpretation, one can extend F to an étale, and therefore Nisnevich, sheaf F on
SmS by taking the identities for τf . Then F is automatically and canonically a
sheaf with transfers (see [CD16, Cor. 2.1.9, 2.1.12]).8

Remark 1.21. It is interesting to consider other topologies, and in particular the
étale one. The theory one gets is closer to SGA4 étale coefficients but further from
algebraic cycles. Fore singular base schemes, the cdh-topology is better behaved
than the Nisnevich one (see [CD15]).

The main result to use sheaves with transfers is the following one.

Theorem 1.22. The forgetful functor Shtr(S)→ PShtr(S) admits a right adjoint
atr : PShtr(S) → Shtr(S) such that for any presheaves with transfers F over S,
atr(F ) restricted to SmS via the graph functor is the associated Nisnevich sheaves
to F ◦ γ.

8This works even for a singular base scheme S.
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The corollary of this theorem are numerous, and can be summarized by saying
that we have a good theory of Nisnevich-local coefficients :

Proposition 1.23. The category Shtr(S) is Grothendieck abelian, complete and
cocomplete. It admits the following operations:

• a closed symmetric monoidal structure (⊗tr,Hom)
• for any morphism of schemes f : T → S, adjoint functors (f ∗, f∗) base

change/direct image.
• for any smooth morphism of schemes p : T → S, adjoint functors (p], p

∗)
forget the base/base change. In particular, if p = j is an open immersion,
j] = j! is the usual exceptional direct image functor.

These operations are uniquely determined by saying that the Yoneda embedding:

Smcor → Shtr(S)

commutes with the functors of 1.9 and the above left adjoints (in the obvious man-
ner).

Moreover, the graph functor induces an adjunction of categories:

γ∗ : Sh(S)→ Shtr(S) : γ∗

where the left hand side is the category of sheaves on the smooth Nisnevich site,
adding/forgetting transfers in such a way that the above six operations are com-
patible with the analogous theory on sheaves without transfers.9

Remark 1.24. The operations of the above proposition are in fact a blueprint of
the six operations, and allows to build the whole formalism in favorable cases:
this is precisely described the cross functors’ theorem of Ayoub and Voevodsky.
This theorem has been extended in the axiomatic of premotivic category in [CD19],
and the preceding proposition can be stated by saying that Shtr(−) is a premotivic
abelian category: see [CD19, 10.3.11, 10.4.2].10.

Note also that that the operations described in 1.9 can be stated by saying
that Smcor

? is a smooth-fibered category over the category regular schemes. It is
essential in order to apply Ayoub-Voevodsky cross functors’ theorem to have a
category fibred over singular bases (in order to consider so-called the localization
property).

1.3. Homotopy invariance. It remains to introduce the last property in Vo-
evodsky’s theory, which allows to use techniques from algebraic topology.

Definition 1.25. A sheaf (resp. presheaf) with transfers F over S will be said A1-
invariant if for any smooth S-scheme X, the map p∗ : F (X) → F (A1

X) induced
by the canonical projection p is an isomorphism.

9Briefly, put, it means all left (resp. right) adjoint commutes.
10In fact, the latter assertion is stronger as it also comprises smooth base change and smooth

projection formulas
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Such sheaves will be called homotopy sheaves (with transfers) and the corre-
sponding subcategory opf Shtr(S) will be denoited by HItr(S).

Remark 1.26. In motivic homotopy, the notion of homotopy sheaves without trans-
fers is central (see [Mor12b]) and transfers have been weakened in several for-
malisms. See [Fel20a] for a comparison of these variants. As we will only use
Voevodsky’s transfers here, we will not indicate them in our terminology.

Example 1.27. The sheaf with transfers Gm (resp. A) of examples 1.11 and
1.18 are A1-invariant. In particular, over a field k, there exists a fully faithful
embedding from the category of semi-abelian schemes G over k into HItr(k), which
maps G to G = HomSmk

(−, G).

1.28. A1-homotopy relation. Let X and Y be smooth S-schemes, and α, β ∈
c(X, Y ) be finite correspondences. One says that α and β are A1-homotopical is
there exists a finite correspondence H ∈ c(A1 × X, Y ) such that α = H ◦ s0 and
β = H ◦ s1 where s0, s1 are respectively the zero and unit sections of the ring
X-scheme A1

X .
This is obviously a reflexive and symmetric relation, and one can take the associ-

ated equivalence relation as the A1-homotopy relation ∼ on finite correspondences.
We put πS(X, Y ) = c(X, Y )/ ∼.

This A1-homotopy relation is compatible with composition of finite correspon-
dences, and we therefore get the A1-homotopy category of smooth correspondences
over S, which we denote by πSmcor

S .
A sheaf with transfers if A1-invariant if and only if it factors through the canon-

ical projection map Smcor
S → πSmcor

S .

These considerations, for finite correspondences over regular bases, were intro-
duced in [Dég07] as a way of expressing some of the main results in Voevodsky’s
theory. This relies on the following essential computation due to Suslin and Vo-
evodsky.

Theorem 1.29. Let S be a regular affine scheme, C be a smooth quasi-affine
relative curve over S which admits a good compactification:

• C̄/S is proper, C̄ is normal and contains C as a dense open subset.
• The complementary C∞ = C̄−C admits an affine open nieghborhood in C̄.

Then for any smooth affine S-scheme X, there exists a canonical isomorphism

πS(X,C)→ Pic(X ×S C̄ ×S C∞)

which to a finite correspondence α ∈ c(X,C) associates the class of the line bundle
O(α) associated with α seen as a Cartier divisor in X ×S C̄.

Under the above formulation, this is proved in [Dég07, 4.3.16]. There is a more
general computation in terms of Suslin homology in [SV96, th. 3.1].
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2. Homotopy sheaves with transfers over a perfect field

In this section we fix a field k. For the main results, we need that k is perfect.
However, we prefer to reserve this assertion when it is really needed.

2.1. Function fields as fiber functors. Points for the smooth Nisnvich site a
priori corresponds to essentially smooth henselian local S-schemes.11 The first
result of the theory is that points for homotopy sheaves are much smaller.

Definition 2.1. A function field over k will be a field extension E/k finitely
generated and separable (i.e. essentially smooth.)

A (smooth) model of E/k will be a smooth finitely generated sub-k-algebra
A ⊂ E. Ordered by inclusion this form a directed poset (equivalently filtered
category).

One define the fiber of a homotopy sheaf F at the function field E/k as the
filtered colimit:

F (E) = lim−→
A⊂E

F (Spec(A)).

Theorem 2.2. The category HItr(k) is Grothendieck abelian, complete and cocom-
plete. The forgetful functor HItr(k) → Shtr(k) is exact and admits a left adjoint
h0 such that

Γ(X, h0(F )) = coKer
(
F (A1 ×X)

s∗0−s∗1−−−→ F (X)
)
.

For each function field E/k, the functor

HItr(k)→ A b, F 7→ F (E)

is a fiber functor (exact and commutes with coproducts), and the family of such
functors for all function fields E/k is conservative.

More precisely, for any smooth k-scheme X, the canonical map

F (X)→ ⊕x∈X(0)F (κ(x)),

where X(0) is the set of generic points, is injective.

The main ingredient to prove the last result consists in building relevant finite
correspondences up to homotopy:

Lemma 2.3. Let j : U → X be an open immersion, into a smooth k-scheme
X. Then there exists a Zariski cover p : W → X and a finite correspondence

11i.e. spectrum of the henzelisation of the local ring of a smooth scheme X at a given point
x ∈ X. These schemes can also be described as the projective limit of the system of Nisneivch
neighborhoods of x in X. This is equivalent to a pro-object of smooth S-schemes with affine
étale transition maps, hence the nam ”essentially smooth S-scheme”.
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α ∈ c(W,U) such that the following diagram commutes up to A1-homotopy:

W
p��

α

{{
U

j
// X.

The lemma uses in an essential way Theorem 1.29. One argues locally on X.
If k is infinite, one can fiber X as a smooth curve over a smooth affine scheme
S. Now, finite correspondences with values in X can be expressed as certain line
bundles using the previous theorem. As we argue locally on the smooth scheme
X, and because the Picard group of a local regular ring has trivial Picard group,
one can build the finite correspondence α with the required property by finding an
appropriate trivialization. The case of a finite field reduces to that of an infinite
field by using transfers. See [Dég07, 4.3.22].

2.4. Idea of proof of the Theorem. The last assertion of the theorem follows from
the lemma: indeed, one obtains that j∗ : F (X)→ F (X) is a split monomorphism.
The second assertion formally follows.
For the first one, the essential point is to prove that the Nisnevich (resp. Zariski)
sheaf associated with an A1-invariant presheaf with transfers not only has transfers
(Proposition 1.23) but is also A1-invariant. See [Dég07, 4.4.15].

2.2. The minus 1 construction. One can use the theorem of the previous sec-
tion to get the following result.

Proposition 2.5. Let X be a smooth k-scheme. Put h0(X) = h0(Ztr
k (X)). Then

the homotopy sheaves h0(X) for a smooth S-scheme X form a generating family in
the abelian category HItr(k). Moreover, this category is closed symmetric monoidal
with tensor product ⊗H such that

h0(X)⊗H h0(X) = h0(X ×k Y ).

Example 2.6. (1) The unit for the above tensor product is the sheaf the con-
stant sheaf h0(k) = Z, such that Γ(X,Z) = Zπ0(X).

(2) One can deduce from Theorem 1.29 that h0(Gm) = Z⊕Gm.

Definition 2.7. Let F be a homotopy sheaf. One defines a new homotopy sheaf
F−1 as follows:

F−1(X) = Ker
(
F (Gm ×X)

s∗1−→ F (X)
)
.

As s1 is a split monomorphism, this indeed defines a homotopy sheaf with trans-
fers. Moreover, one derives from the previous example that F−1 = HomHItr(k)(Gm, F ).

Example 2.8. As an exercise, one gets:

• (Gm)−1 = Z.
• For any abelian variety A over k, A−1 = 0.
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The following result, a consequence of Voevodsky’s cancellation theorem, is much
more difficult to get:

Theorem 2.9 (Cancellation). Let F be homotopy sheaf over a (perfect) field k.
Then the canonical map

F 7→ (Gm⊗H F )−1

is an isomorphism.

One can find a direct proof (without using the assumption k perfect) of that
result in the thesis [Dég02, 6.3.2].

One of the main lemma of Voevodsky for what will follow is the following purity
result.

Proposition 2.10. Let F be a homotopy sheaf and i : Z → X be a codimension
1 closed immersion of smooth k-schemes. Put U = X − Z and let j : U → X be
the open immersion.

Then there exists a short exact sequence of Nisnevich sheaves over XNis:

0→ FX
τ ′j−→ j∗(FU)→ i∗(F−1,Z)→ 0.

where we use the notation of Paragraph 1.19, τ ′j being obtained by adjunction from
τj : j∗(FX)→ FU .

The fact τ ′j is a monomorphism follow from the last assertion of Theorem 2.2.
The computation of the cokernel of τ ′j then uses several ingredients, such as Nis-

nevich excision and the fact that Nisnevich locally, (X,Z) looks like (A1
Z , Z). This

last assertion uses in an essential way the fact we work over a base field. We refer
the reader to [Dég07, Section 4.5.3].

2.3. Main theorem. We now study Nisnevich cohomology of homotopy sheaves.
In all this subsection, cohomology is always computed for the Nisenvich topology.
As a prelude, we have:

Proposition 2.11. Let k be any field. Then one has the following computations:

Hn
Nis(A1

k, F ) =

{
F (k) n = 0,

0 n > 0.

Hn
Nis(Gm,k, F ) =

{
F (k)⊕ F−1(k) n = 0,

0 n > 0.

Differently put, we want to prove that the smooth curves C = A1
k,Gm,k is F -

acyclic. The proof actually works for any smooth curves over k such that

(N) for any finite extension L/k, Pic(CL) = 0.
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It consists in constructing an explicit contracting homotopy of the complex com-
puting Nisnevich Čech cohomology. This contracting homotopy is defined by suit-
ably constructed finite correspondences thanks to Theorem 1.29 and the property
(N). See [Dég07, Th. 4.3.24] for the construction of contractions and [Dég07, Cor.
4.4.11] for the final computation.

The main result, on which the theory of motivic complexes over a perfect field
is based, is the following:

Theorem 2.12 (Voevodsky). Let F be a homotopy sheaf over a perfect field k.
Then for any integer n ≥ 0, the presheaf Hn

Nis(−, F ) over SmS is homotopy in-
variant: for any X/k smooth,

p∗ : Hn
Nis(X,F )→ Hn

Nis(A1
X , F )

is an isomorphism.

Remark 2.13. The cohomology groups considered are strictly speaking the coho-
mology of the sheaf γ∗(F ) = F ◦γ obtained after forgetting the transfers. However,
because γ∗ is exact (due to Proposition 1.23) and the existence of the associated
sheaf with transfers), one gets for any smooth k-scheme Y :

Hn
Nis(Y, γ∗F ) = HomD(Sh(Smk,Z))(Z(Y ), γ∗F [n]) ' HomD(Shtr(k))(Lγ

∗(Z(Y )), F [n])

= HomD(Shtr(k))(Ztr(Y ), F [n]).

Idea of proof. The full proof is given in [Dég07, Section 4.5.4].
We will denote by H∗ the Nisnevich cohomology. Note that we can extend the ho-
motopy sheaf F , and its cohomology presheaves, to essentially smooth k-schemes.
We will do that in this summary, as it simplifies the arguments of loc. cit. As a
preliminary, one deduces from the Leray spectral sequence applied to the projec-
tion p : A1

X → X and to the sheaf FX on XNis, that it suffices to prove that for
any henselian local essentially smooth k-scheme X — we will say k-point — and
any n > 0,

(V(X,n)) Hn(A1
X , F ) = 0.

The case n = 1. One deduce from Proposition 2.10 that for an essentially smooth
closed pair (X,Z) of codimension one,

H1
Z(X,F ) ' F−1(Z).

Let now (X,Z) be a closed pair such that X and Z are k-points. According to
the above result, and the fact H1(X,F ) = 0, one gets an exact sequence:

0→ F (X)→ F (X − Z)→ F−1(Z)→ 0.

If we now use (essentially smooth) closed pair (A1
X ,A1

Z), one deduces a long exact
sequence of the form with U = X − Z:

0→ F (A1
X)→ F (A1

X−Z)→ F−1(A1
Z)→ H1(A1

X , F )
(∗)−→ H1(A1

X−Z , F )
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Applying the homotopy invariance for F and F−1, and the preceding short exact
sequence, one obtains that the map (∗) is injective.

If X is a k-popint of dimension 1, its closed point Z is essentially smooth as
k is perfect. Then (X − Z) = Spec(E), where E is the function field of X. In
this case the map (∗) gives an injection of H1(A1

X , F ) into H1(A1
E, F ). Therefore

Proposition 2.11 implies that V (X, 1) is true.
The argument for a k-point X of arbitrary dimension is similar but one has first

to prove that for any open subscheme U ⊂ X, the map H1(A1
X , F )

(∗)−→ H1(A1
U , F )

is a monomorphims. This can be deduced from the case (∗) has X−U can always
be included into a normal crossing divisors, and then one can apply the case of
smooth divisors. One concludes by taking the limit over all open subschemes U
that H1(A1

X , F ) injects into H1(A1
κ(X), F ) and then one concludes by applying

again Proposition 2.11.

The general case proceeds by induction on n showing in the inductive step the
following property:

For any smooth closed pair (X,Z) of codimension 1,

with complementary open immersion j : U → X,

∀0 < m < n, Rmj∗(FU) = 0.

(J(n))

�

2.4. Gersten resolution. As a corollary of Theorem 2.12, we get the following
result.

Corollary 2.14. Let F be a homotopy sheaf over a perfect field k. Then for any
smooth closed pair (X,Z) of codimension c, there exists a canonical isomorphism:

Hn
Z(X,F ) ' Hn−c

Nis (Z, F−c)

where the left hand-side is the Nisnevich with support.

In fact, the property (J(n)) in the proof of Theorem 2.12 together with Proposi-
tion 2.10 implies the codimension 1 case. The general case is obtained by induction
on the codimension, or via Morel-Voevodsky relative purity theorem and a detour
via orientation theory.12

2.15. Let F be as above. Let X be a smooth k-scheme, and X(p) the set of
codimension p points of X.

Another way of stating the above corollary, in term of local Nisnevich cohomol-
ogy is:

Hn
x (X(x), F ) =

{
F−p(κ(x)) n = p,

0 n 6= p.

One deduces from the coniveau spectral sequence for Nisnevich cohomology.

12Sheaves with transfers are oriented on the nose given the isomorphism H1(X,Gm) = Pic(X).
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Proposition 2.16 (Gersten resolution). The E1-term of the coniveau spectral
sequence for the Nisnevich cohomology of X with coefficients in X gives a complex
of the form:

Cp(X,F ) = ⊕x∈X(p)F−p(κ(x)),

called the Gersten complex of X with coefficients in F . There exists a canonical
isomorphism

Hn
Nis(X,F ) ' Hn(C∗(X,F )).

The Gersten complex and the isomorphism are functorial in X with respect to étale
morphisms.

In particular, if we denote by C∗(−, F )X the sheaf on XNis which to V/X as-
socaited C∗(V, F ), we get a canonical augmentation map FX → C∗(−, F )X of
sheaves on XNis and the preceding result tells us that this is a quasi-isomorphism.
As C∗(−, F )X is a complex of Zariski flasque sheaves, we have in fact obtained.

Corollary 2.17. Under the notations of the preceding proposition, the comparison
map

Hn
Zar(X,F )→ Hn

Nis(X,F )

is an isomorphism.
Moreover, FX seen as a sheaf on XZar is Cohen-Macaulay in the sense of [Har66,

Definition p. 238], and the complex C∗(−, F )X on XZar is the Cousin complex
associated with FX .

The last two assertions follow, by the definitions in [Har66], from the comparison
between Nisnevich and Zariski cohomology and the computation in Paragraph
2.15.

2.18. Let E be a field. Recall that one defines the Milnor K-theory KM
∗ (E) of

E as the N-graded algebra obtained as the quotient of the tensor algebra T ∗Z(E×)
modulo the ideal generated by x⊗ (1− x) for x ∈ K − {0, 1}.

Let now E be a function field. The fiber of the homotopy sheaf Gm over E
is obviously E×. By definition of the tensor product of homotopy sheaves, one
deduces a canonical map

λEn : T nZ (E×) = Gm(E)⊗Z . . .⊗Z Gm(E)→ G⊗H,n
m (E)

The following result is a consequence of a computation of Suslin and Voevodsky in
[SV00, Th. 3.4] but can be obtained within the theory of homotopy sheaves (see
[Dég02, 5.5.10]).

Theorem 2.19. The map λEn induces an isomorphism of N-graded algebra:

KM
∗ (E)→ G⊗H,∗

m (E).

Example 2.20. Let us consider the Gersten complex C∗(X,G⊗H,n
m ). According to

the above theorem and the cancellation theorem, one gets:
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(1) assuming X is connected for simplicity, with function field K: it starts as
follows:

0 // C0(X,G⊗H,n
m ) // C1(X,G⊗H,n

m ) // 0 . . .

Gm(K)
d1
X // ⊕x∈X(n−1)Kn−1(κ(x)).

One denotes by KM
n (X) the kernel of the map d1

X . This is classically called
the n-th unramified Milnor K-theory of X. Then the Gersten resolution
for G⊗H,n

m implies that, as sheaves, one gets:

G⊗H,n
m ' KM

n .

(2) the Gersten complex ends as follows:

. . . // Cn−1(X,G⊗H,n
m ) // Cn(X,G⊗H,n

m ) // 0 . . .

⊕y∈X(n−1)Gm(κ(y))
div // ⊕x∈X(n)Z,

where div associates to a meromorphic function f ∈ Gm(κ(y)), its codi-
mension n divisor (made by the zeros and poles of f with their multiplicity
as coefficient!) In particular, one deduces:

Hn
Nis

(
X,G⊗H,n

m

)
= CHn(X),

the group of codimension n cycles modulo rational equivalence. This is
in fact Bloch’s formula using the identification of G⊗H,n

m with the n-th
unramified Milnor K-theory.

3. Voevodsky’s motivic complexes

3.1. Definition.

3.1. In the preceding section, we have built a good theory of ”motivic” coefficients,
homotopy sheaves. Following classical perspective, it would be natural to consider
the derived category of homotopy sheaves. However, this procedure is too coarse
for A1-homotopy, and will not capture ”higher” invariants such as higher Chow
groups. In particular, we have to go with a more evolved definition of derived
A1-homotopy, which still uses the three ingredients put into light in 1.1: transfers,
Nisnevich topology, A1-homotopy.

To give a definition, we will use the framework of ∞-categories. In particular,
D(A b) denotes the derived ∞-category of abelian groups. It is additive in the
sense of [GGN15, Def. 2.6].
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Definition 3.2. Let S be a (regular) scheme. The ∞-category of motivic com-
plexes DMeff(S,Z) is the ∞-category of additive functors13

K : (Smcor
S )op → D(A b),

called for today ∞-presheaves with transfer over S, which satisfy the following
properties:

(1) Excision. For any smooth S-schemes X, Y and any excisive morphism p :
(Y, T )→ (X,Z) of closed pairs, the induced map p∗ : K(Y, T )→ K(X,Z)
is a weak equivalence in D(A b).

(2) A1-invariance. for any smooth S-scheme X, the map K(X) → K(A1
X) is

weak equivalence in D(A b).

For a closed pair (X,Z), we have denoted by K(X,Z) the (homotopy) kernel of
K(X)→ K(X − Z) in D(A b).

The ∞-category DMeff(S,Z) is stable and presentable. We will see below an
equivalent definition which makes this statement more obvious. Note that any
(abelian) presheaf with transfers gives in particular an ∞-presheaf with transfers.
This includes in particular objects Ztr

S (X) for X/S smooth — one can also use the
∞-categorical Yoneda embedding.

Remark 3.3. In fact, the excision property is equivalent to say that for any distin-
guished square ∆ as in Paragraph 1.14, K(∆) is homotopy cartesian in D(A b).
According to Remark 1.16, this is also equivalent to say that K satisfies Nisnevich
descent (with respect to all Nisnevich hyper-covers).

3.4. The advantage of this definition is to insist on the universal property of the
∞-category of motivic complexes DMeff(S,Z). One can also easily derive some of
its basic properties. Recall that Smcor has a premotivic structure (Paragraph 1.9).
One can extend some of these operations as follows.

Let f : T → S be a morphism of schemes. Given an ∞-presheaf with transfers
K over T , one defines f∗(K) as the ∞-presheaves with transfers:

(Smcor
T )op (f∗)op

−−−→ (Smcor
T )op → D(A b).

Indeed, one checks easily that f∗(K) satisfies excision and A1-invariance. One
indeed gets an ∞-functor:

f∗ : DMeff(T,Z)→ DMeff(S,Z).

This functor obviously commutes with products, and as the∞-categories involved
are presentable, this functor automatically admits a left adjoint f ∗. This left

13i.e. functors commuting with finite products, [GGN15, Def. 2.6]. In fact, this property is
readily implied by Excision ! However, one can restrict to functors whose morphisms on objects
are really presheaves with transfers in the sense of Definition 1.10.
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adjoint is characterized by the fact it commutes with (homotopy) colimits and the
property:14

f ∗(Ztr
S (X)) = Ztr

T (X ×S T ).

Let now p : T → S be smooth. Given an ∞-presheaf K over S, one defines
p](K) as the infty-presheaf with transfers:

(Smcor
S )op (p])

op

−−−→ (Smcor
S )op → D(A b).

Again we obtain a functor

p] : DMeff(S,Z)→ DMeff(T,Z).

But one can check it satisfies the characterizing properties of p∗. Therefore, one
gets an equivalence of functors: p∗ ' p]. Finally, this functor commutes with
co-products, and therefore admits a left adjoint p] which is characterized by the
fact it commutes with (homotopy) colimits and the property:

p](Ztr
T (Y )) = Ztr

S (Y → T
p−→ S).

The tensor product, and internal Hom, can be defined along the same lines, but
it is better to use the description of DMeff(S,Z) by localization as it allows to
get that the stable ∞-category DMeff(S,Z) is generated under suspensions and
colimits by the objects Ztr

S (X) for X/S smooth.
Admitting this construction, for the moment, we have therefore formally ob-

tained six ∞-functors, organized by adjoint pairs (f ∗, f∗), (p], p
∗) and ⊗,Hom

which will serve as a basis for the six functors formalism via Ayoub-Voevodsky
cross functors theorem. These functors do satisfy some basic properties which
are summarized in the axiomatic of premotivic∞-categories (derived from [CD19,
Section 1.3]).

3.5. The category PSht(Smcor,D(A b)) of additive ∞-presheaves with transfers
is presentable and stable. Therefore, one can use localization theory of such ∞-
categories. This allows to obtain the description of DMeff(S,Z) as the localization
of PSht(Smcor,D(A b)) with respect to the following maps:

(1) Ztr
S (X•)

π∗−→ Ztr
S (X), for any Nisnevich hyper-cover X•

π−→ X of a smooth
X/S, where Ztr

S (X•)) means the complex associated with the obvious sim-
plicial presheaf with transfers.

(2) Ztr
S (A1

X)
p∗−→ Ztr

S (X) for a smooth X/S

In classical Voevodsky’s theory, one hides the first localization into the theory of
sheaves. More precisely one uses the following description of motivic complexes
over S.

Proposition 3.6. The ∞-category DMeff(S,Z) as defined above is canonically
equivalent to the localization of the∞-category D(Shtr(S)) with respect A-homotopy,
that is maps in point (2).

14This follows from the definitions and the (additive) Yoneda embedding.
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As a consequence, one obtains the following classical definition.

Definition 3.7. Let S be a (regular) scheme. A motivic complex over S is a
complex K of sheaves with transfers whose Nisnevich cohomology H∗Nis(−, K) of
K is A1-homotopy invariant: for any smooth X/S, and any integer n,

p∗ : Hn
Nis(X,K)→ Hn

Nis(A1
X , K)

is an isomorphism.

One can reformulate that property, in more∞-categorical terms, by saying that
for any smooth X/S, the canonical map:

p∗ : R Hom(Ztr
S (X), K)→ R Hom(Ztr

S (A1
X), K)

is a weak equivalence in the∞-category D(Shtr(X)). In other words, K is A1-local
with respect to the localization described in the preceding proposition. In other
words, DMeff(S,Z) can be identified as the sub-∞-category of D(Shtr(S)) made by
the A1-local complexes.

The main problem of this abstract definition is to be able to understand A1-local
complexes. This is where Voevodsky’s main theorem enter into play.

For the rest of this notes, unless stated otherwise, we will now work
over a perfect field k.

3.2. Motivic complexes over a perfect field and Suslin singular complex.

3.8. As the category Shtr(S) is abelian, we can define the cohomology Hq(K) of a
complex of sheaves with transfers K. Concretely, it is obtained by first comput-
ing the cohomology of K in the category of presheaves with transfers, and then
applying the associated Nisnevich sheaf with transfers (see Theorem 1.22).

It is easy to obtain, using the hypercohomology spectral sequence

Ep,q
2 = Hp(X,Hq(K))⇒ Hp+q(X,K)

and the fact it converges15, that K is A1-local if and only if the sheaves with
transfers Hq(K) are A1-local. Therefore, as a corollary of Theorem 2.12, one gets.

Theorem 3.9. A complex of sheaves with transfers K over k is A1-local if and
only if for all n ∈ Z, Hn(K) is a homotopy sheaf.

3.10. Recall that a t-structure on a stable ∞-category T is the data of cohomo-
logically non-negative (resp. negative) objects T ≤0 (resp. T >0) such that:

• T ≤0 (resp. T >0) is stable under suspension −[1] (resp. desuspension
−[−1])
• HomHo(T )(T

≤0,T >0) = 0

15Recall that Ninsevich cohomology is bounded: for a scheme X of finite dimension d, and
any Nisnevich sheaf F over XNis, H

n(X,F ) = 0 if n /∈ [0, d]; in particular, Ep,q
2 is concentrated

in degree p ∈ [0,dim(X)].
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• for any object K of T , there exists (K ′, K ′′) ∈ T ≤0×T >0 and a homotopy
exact sequence:

K ′ → K → K ′′
+1−→

One defines: T ≤n = T ≤0[−n], T ≥n = T >0[−n + 1]. Then, the heart T ♥ =
T ≤0 ∩T ≥0 is automatically abelian category.

As a corollary of the preceding theorem, the natural t-structure on D(Shtr(S)),
induces a t-structure on DMeff(S): an A1-local complex is cohomologically non-
negative (resp. negative) if for all i < 0 (resp. i ≥ 0), Hi(K) = 0.

Definition 3.11. The t-structure on DMeff(k) described above is called the ho-
motopy t-structure. In particular, DMeff(k)♥ = HItr(k).

Remark 3.12. In motivic homotopy theory, it is more customary to use homological
conventions. This means we put: T≥0 := T ≤0 (resp. T<0 := T >0) and call them
the homologically non-positive (resp. positive) objects.

For motivic complexes, we also put Hi(K) = H−i(K).

3.13. Suslin (singular) complex. Recall one defines the standard cosimplicial k-
scheme which in degree n is:

∆n = Spec(k[t0, . . . , tn]/(t0 + . . .+ tn))

Abstractly, ∆n ' An
k , but the above presentation immediately gives a cosimplicial

structure.
Let K be a complex of sheaves with transfers over k. One defines a new complex

CS
*(K) whose global sections on a smooth X/S are given by the coproduct total

complex of the bicomplex:

K(∆• ×k X).

One formally obtains that the cohomology presheaves of CS
*(K) are A1-invariant.

Thanks to the last point of 2.4, this implies that the cohomology sheaves of CS
*(K)

are homotopy sheaves; in other words, CS
*(K) is A1-local. Further:

Proposition 3.14. The Suslin complex functor induces an ∞-functor:

LA1 : D(Shtr(S))→ DMeff(S), K 7→ R Hom(Ztr
S (∆•), K)

which is left adjoint to the inclusion DMeff(S)→ D(Shtr(S)).

One calls LA1 the A1-localization functor (over k).

Remark 3.15. Note that as a left adjoint to the inclusion of A1-local objects, there
always exists an A1-localization functor (even over any base). All the interest of
Voevodsky’s theory is to get a simple construction of the latter.
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3.3. Voevodsky (homological) motives. Thanks to Proposition 3.14, we have
now an easy way to produce motivic complexes over k.

Definition 3.16. One defines the homological motives of a smooth k-scheme as
the motivic complex M(X) = CS

* Ztr
k (X).

In particular, M(X) is covariantly functorial in X, with respect to morphisms
and even finite correspondences. Moreover, M(X) is concentrated in homological
positive degree for the homotopy t-structure. Its homotopy sheaves are determined
by their fibers over function field E/k and one has the formula:

Hn(M(X))(E) = Hn

(
cE(∆∗E, XE)

)
The latter group is the Suslin homology of XE/E.

Remark 3.17. A further link with the previous section is that one gets:

H0(M(X)) = h0(X)

using notations of Proposition 2.5 (see also Theorem 2.2).

Extending the computation of Theorem 1.29, one gets:

Proposition 3.18. Let C̄/k be a smooth projective curve, and C ⊂ 6= C̄ an open
subscheme. Put C∞ = C̄ − C. Then

Hn(M(C)) =

{
Pic(C̄, C∞) n = 0

0 n 6= 0.

In other words, M(C) is concentrated in homotopy degree 0.

Example 3.19. (1) The motive M(Gm) is concentrated in degree 0 and from
Example 2.6, one gets:

M(Gm) = H0(Gm) = Z⊕Gm.

(2) More generally, after the choice of a base point x ∈ C(k), one can consider
the generalized albanese variety A associated with C/k, which is the dual
of Rosenlicht-Serre’s generalized jacobian associated with (C̄, C∞) — and
the base point x.16 In particular, A is a semi-abelian variety and there is a
universal map C → A mapping x to 0. Using Example 1.27, one associates
to the semi-abelian variety A a homotopy sheaf A and one can recast the
previous computation as follows:

M(C) = Z⊕ A.

16We refer the interested reader to [SS03].
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3.4. Tate twists and tensor products.

3.20. As mentioned previously, one can extend the monoidal structure of Smcor
k

to the category of motivic complexes. The current construction uses an explicit
monoidal model structure on the category of complexes of sheaves with transfers
(see [CD09, Ex. 3.3] for the regular case and [CD19, 11.1.1, ] for the general
one). In particular DMeff(k,Z) is a monoidal ∞-category. Moreover, the closed
symmetric monoidal structure ⊗ is uniquely characterized by the property:

M(X)⊗M(Y ) = M(X ×k Y ).

Remark 3.21. Note that the monoidal structure on DMeff(k,Z) is compatible with
the homotopy t-structure, in the sense that a tensor product of homlologically
positive objects is homologically positive. This implies that the monoidal structure
descends on the heart. In fact, on obtains for non-negative homological motivic
complexes K and L:

H0(K ⊗ L) = H0(K)⊗H H0(L).

Definition 3.22. One define the Tate twist (for motivic complexes) by the for-
mula:

Z(1) = coKer
(
M{1} →M(Gm)

)
[−1].

For any integer n ≥ 0, we put Z(n) = Z(1)⊗,n.

As a corollary of the previous example, one obtains that Z(1) = Gm[−1]: Z(1)
in concetrated in cohomological homotopy degree 1.

Remark 3.23. Using the above property of the tensor structure of motivic com-
plexes, one easily obtains that Z(n)[n] is the cokernel of the map

⊕ni=1M(Gn−1
m )

∑
i 1i∗−−−−→M(Gn

m)

where νi : Gn−1
m ' Gn

m is the closed immersion which equate the i-coordinate to 1.
This implies in particular that Z(n) is concentrated in cohomological homotopy
degree ]−∞, n].

The (reinforced) Beilinson-Soulé conjecture asks the question if Z(n) is concen-
trated in cohomological homotopy degree [1, n] for any n > 0. The only known
case is that of n = 1, due to the previous computation. Due to Voevodsky’s proof
of the Bloch-Kato conjecture, the case of integral coefficients is equivalent to the
case of rational coefficients.

Example 3.24. At least we know one homotopy sheaf of Z(n), the highest coho-
mological one. Due to Remark 3.21 and Example 2.20, one gets:

Hn(Z(n)) ' G⊗H,n
m ' KM

n

where the right hand-side is the n-th unramified Milnor K-theory (see loc. cit.).
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Definition 3.25. One defines the motivic cohomology of a smooth k-scheme X
in bidegree (n, i) ∈ Z× N as

Hn,i
M (X) = Hn

Nis(X,Z(i)).

We call n the degree and i the twist.

Note that according to Remark 2.13 (and the fact Z(i) is A1-local), one also
gets:

Hn,i
M (X) = HomDMeff(k,Z)

(
M(X),Z(i)[n]

)
.

This was one of Beilinson’s desired interpretation of motivic cohomology.
Summarizing the computations obtained so far, we get:

Proposition 3.26. Let X be a smooth k-scheme. Then:

(1) in twist 0:

Hn,0(X) =

{
Zπ0(X) n = 0

0 n 6= 0.

(2) in twist 1:

Hn,1(X) =


Gm(X) n = 1

Pic(X) n = 2

0 n 6= 1, 2.

(3) for i > 1,

Hn,i
M (X) =

{
CHi(X) n = 2i

0 (n > 2i) or (n− i > dim(X))

Each of the computations follows from what we have obtained. For the last
one, we can use either the Nisnevich hypercohomology spectral sequence for the
complex Z(n), Bloch’s formula and the computation of the above example or the
coniveau spectral sequence.17

3.5. Further results.

3.27. In the next course, we will see how to define a stable (effective) version of
the category of motivic complexes. This allows to obtain duality results for the
motive of smooth projective varieties. We can still state results that reflect this
embedding. From the computations of Proposition 3.18, one can derive:

Proposition 3.28. Let C/k be a smooth projective curve, with a rational point
x ∈ C(k). Let A be the albanese variety of C based at x.18

17In fact, the two spectral sequence coincides from E2 on ! See [Bon10, Dég14]
18i.e. A is the univeral abelain variety with a given map C → A maping x to 0. This is also

the dual of the Picard scheme of C based at x.
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Then one gets:

Hi(M(C)) =


Z⊕ A n = 0

Gm n = 1

0 n 6= 0, 1.

Moreover, one gets a decomposition in the category of motivic complexes:

M(C) = Z⊕ A⊕ Z(1)[2].

This corresponds to the (Chow-)Künneth decomposition of the Chow motive
associated with C (see [And04, 4.3.4])

In fact, we get the following comparison result, which hides a duality.

Proposition 3.29. Let X and Y be smooth proper k-schemes, d = dim(Y ). Then
there exists an isomorphism:

Hom
(
M(X),M(Y )

)
' Hom(M(X ×k Y ),Z(d)[2d]) ' CHd(X ×k Y ).

Moreover, we get a fully faithful contravariant functor:

CHMeff(k,Z)op → DMeff(k,Z), h(X) 7→M(X)

where the left hand-side is the category of effective Chow motives with integral
coefficients (see [And04, 4.1.1]).

For this comparison, and a stronger result in the relative case, we refer the
reader to [Fan16].

Remark 3.30. Beware that we are sure that Chow-Künneth decompositions do not
always exist for integral Chow motives, contrary to what we obtain in Proposi-
tion 3.28. This can already be seen for example as we had to assume that C has a
rational point ! In general, if there is no 0-cycle of degree 0 in a smooth projective
k-scheme X, it is not possible to construct the Künneth projector of the 0-th part.

3.31. It is possible to extend some of the results to non perfect fields. In particular,
realizing a long-term project of Suslin19, one gets the comparison with Bloch’s
higher Chow groups which were actually the first known definition of what should
deserve the name of motivic cohomology according to Beilinson’s conjectures.

Theorem 3.32 (Voevodsky, [Voe02]). Let X be a smooth k-scheme. Then for any
integers (n, i), there exists an isomorphism

Hn
(
X,Z(i)

)
' CHi(X, 2i− n)

when one defines Z(i) by the formula of Remark 3.23.

Remark 3.33. (1) Actually, it was proved as a consequence that for singular k-
schemes (of finite type), Bloch’s higher Chow groups computs the so-called
Borel-Moore motivic homology : see [Lev04].

19This was actually the motivation to introduce Suslin singular homology in the 1987 confer-
ence on K-theory in Luminy.
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(2) The comparison of the above theorem provides the relation between motivic
cohomology with algebraic K-theory: see the talk by Matthew Morrow.
With rational coefficients, we will see another approach in the next course.
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Appendix A. Exercices by Niels Feld

A.1. Milnor K-theory. (see [GS17]) The Milnor K-groups KM
n (k) attached to a

field k is the quotient of the n-th tensor power (k×)⊗n of the multiplicative group
of k by the subgroup generated by those elements a1⊗· · ·⊗an for which ai+aj = 1
for some 1 ≤ i < j ≤ n. Thus KM

0 (k) = Z and KM
1 (k) = k×. Elements of KM

n (k)
are called symbols; we write [a1, . . . , an] for the image of a1 ⊗ · · · ⊗ an in KM

n (k).

(1) Show that Milnor K-groups are functorial with respect to field extensions:
given an inclusion φ : k ⊂ K, there is a natural map iK/k : KM

n (k) →
KM
n (K) induced by φ.
Given α ∈ KM

n (K), we shall often abbreviate iK/k(α) by αK .
(2) Show that the product pairings

(k×)n⊗ × (k×)m⊗

induce a structure of graded ring on

KM
∗ (k) =

⊕
n≥0K

M
n (k).

(3) (a) Prove that the group KM
2 (k) satisfies the relations

[x,−x] = 0 and [x, x] = [x,−1].
(b) Prove that the product operation on KM

∗ (k) is graded-commutative,
i.e. it satisfies

[α, β] = (−1)nm[β, α]
for α ∈ KM

n (k) and β ∈ KM
m (k)

(4) Let F be a finite field. Prove that, for all n > 1, the groups KM
n (F) are

trivial.
(5) Let K be a field equipped with a discrete valuation v : K× → Z. Denote

by Ov the associated valuation ring and by κ(v) its residue field.
(a) Fix π a local parameter (i.e. an element satisfying v(π) = 1). For n

a natural number, show that KM
n (K) is generated by symbols of the

form [π, u2, . . . , un] and [u1, . . . , un] where ui are units in Ov.
(b) For each n > 0, there exists a unique morphism

∂M : KM
n (K)→ KM

n−1(κ(v))
satisfying

∂M([π, u2, . . . , un]) = [ū2, . . . , ūn)
for all local parameters π and all units ui, where ūi denotes the image
of ui in κ(v).
Moreover, once a local parameter π is fixed, there is a unique morphism

sMπ : KM
n (K)→ KM

n (κ(v))
with the property

sMπ ([πi1u1, . . . , π
inun]) = [ū1, . . . , ūn]

for all integers ij and units ui of Ov.
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(c) Prove that the tame symbol ∂M : KM
1 (K) → K0(κ(v)) is the valua-

tion map v : K× → Z, and that the tame symbol ∂M : KM
2 (K) →

KM
1 (κ(v)) is given by the formula

∂M([a, b]) = (−1)v(a)v(b)av(b)b−v(a)

where the lines denotes the image in κ(v).
(d) Prove that, for [a1, . . . , an] ∈ KM

n (K), one has the formula
sMπ ([a1, . . . , an]) = ∂M([−π, a1, . . . , an])

for all local parameters π.
(e) Let L/K be a field extension and bL a discrete valuation of L extending

v with residue field κ(vL) and ramification index e. Denoting the
associated tame symbol by ∂ML , one has for all α ∈ KM

n (K)
∂ML (αL) = e · ∂M(α).

(f) Denote by Un the subgroup of KM
n (K) generated by those symbols

[u1, . . . un] where all the ui are units in Ov, and U1
n ⊂ KM

n (K) the sub-
group generated by symbols [x1, . . . , xn] with x1 a unit in Ov satisfying
x1 = 1.

(i) Prove that U1
n ⊂ Un.

(ii) Prove that we have exact sequences

0 // Un // KM
n (K)

∂M // KM
n−1(κ(v)) // 0

and

0 // U1
n

// KM
n (K)

(sMπ ,∂
M )
// KM

n (κ(v))⊕KM
n−1(κ(v)) // 0.

(g) Assume moreover that K is complete with respect to v, and let m > 0
be an integer invertible in κ(v).
Prove that the pair (sMπ , ∂

M) induces an isomorphism
KM
n (K)/mKM

n (K) '
KM
n (κ(v))/mKM

n (κ(v))⊕KM
n−1(κ(v))/mKM

n−1(κ(v)).
(6) Recall that the discrete valuations of k(t) trivial on k correspond to the

local rings of closed points P on the projective line P1
k. As before, we denote

by κ(P ) their residue fields and by vP the associated valuations. At each
closed point P 6= ∞ a local parameter is furnished by a monic irreducible
polynomial πP ∈ k[t]; at P =∞ one may take πP = t−1. The degree of the
field extension [κ(P ), k] is called the degree of the closed point P ; it equals
the degree of the polynomial πP . Thus we obtain tame symbols

∂MP : KM
n (k(t))→ KM

n−1(κ(P ))

and specialization maps

sMπ : KM
n (k(t))→ KM

n (κ(P )).

(a) Show that the image of the product map
∂M := (∂MP ) : KM

n (k(t))→
∏

P∈P1−{∞}K
M
n−1(κ(P ))

lies in the direct sum.
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(b) Denote by Ld the subgroup of KM
n (k(t)) generated by those symbols

[f1, . . . , fn] where fi are polynomials in k[t] of degree ≤ d. For each
d > 0, consider the map

∂Md : KM
n (k(t))→

⊕
deg(P )=dK

M
n−1(κ(P ))

defined as the direct sum of the maps ∂MP for all closed points P of
degree d.
Prove that its restriction to Ld induces an isomorphism

∂
M

d : Ld/Ld−1 '
⊕

deg(P )=dK
M
n−1(κ(P )).

(c) (Homotopy invariance) Prove that the sequence

0 // KM
n (k) // KM

n (k(t))
∂M //

⊕
P∈P1−{∞}K

M
n−1(κ(P )) // 0

is exact and split by the specialization map sMt−1 at ∞.

A.2. Milnor-Witt K-theory. (see [Mor12a, Chapter 3])

(1) Generalize the previous results to the Milnor-Witt K-groups KMW
∗ (k).

A.3. Smooth models.

(1) Let E be a finitely generated field over the perfect field k. By definition,
a smooth model of E is an affine smooth scheme X = SpecA of finite type
such that A is a sub-k-algebra of E, with function field E.

Convince yourself that such a smooth model always exists.
(2) Let E/k and L/k be two extensions and φ : E → L a morphism such

that the extension L/E is finite. By definition, we call k-model of L/E
any triplet ((X, x), (Y, y), f : Y → X) such that (X, x) is a model of E/k,
(Y, y) is a model of L/k and f is a dominant finite morphism making the
following diagram commutative:

SpecL
Specφ//

y

��

SpecE

x
��

Y
f // X

where the vertical maps are induced by the points x and y.
(a) Let f : Y → X be an equidimensional finite morphism of schemes.

Assume that U is a dense open subscheme of Y .
Prove that the open subscheme f−1(X−f(Y −U)) is dense containing
U .

(b) Let E/k be an extension and E/L a finite extension of fields.
Prove that there exists a k-model of L/E.

(3) Let E/k be an extension and L/E a finite extension. Consider f : Y → X
and f ′ : Y ′ → X ′ two k-models of L/E.

Prove that there is a k-model f ′′ : Y ′′ → X ′′ of L/E such that the
diagram
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Y
f // X

Y ′′
f ′′ //

OO

��

X ′′

OO

��
Y ′

f ′ // X ′

is commutative and compatible with the base points.

A.4. Grothendieck-Witt groups. (see [Fel20b])

(1) Let E be a field of characteristic p > 0. Let α ∈ GW(E) be an element in
the kernel of the rank morphism GW(E)→ Z.

Prove that α is nilpotent in GW(E).

A.5. Enumerative geometry.

A.5.1. Apollonius circles. (see [Che19])

(1) Show that the two following definitions are equivalent:
(a) A circle in P2 is given by the equation

(x− az)2 + (y − bz)2 = r2z2.
(b) A circle in P2 is a conic given by V (f) where f ∈ (z, x2 + y2).

(2) Define

Φ = {(r, C) ∈ D × P3 |C is tangent to D at r}

where D is a smooth circle and P3 is viewed as the space of circles.
Prove that the correspondence Φ is 2-dimensional and irreducible.

(3) Denote by π2 : Φ → P3 the second canonical projection and ZD = π2(Φ)
its image.

Prove that ZD has dimension 2.
(4) Consider a line L inside P3. Viewing P3 again as the space of circles, L

parameterizes a family of circles {Ct}t∈P3 .
Assuming L is generic, prove that L ∩ ZD consists of 2 points.
Conclude that ZD is a quadric surface.

(5) Let C be a circle tangent to D. Prove that the line between C and D is in
ZD. Hence ZD is a quadric cone with vertex in D.

(6) Given three circles in general position, how many circles are tangent to all
three?
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Appendix B. Table of notations

CHn(X) Chow group (algebraic cycles of codimension n modulo rational
equivalence)

Pic(X) Picard group (isomorphism classes of invertible vector bundles over
X)

Pic(X,Z) relative Picard group (isomorphism classes of vector bundles over
X with a given trivialization over Z)

KM
∗ (E) Milnor K-theory of the field E
Xt small site for the topology t = Zar,Nis, ét
X(n) set of codimension n points x of X (dim(OX,x = n)

Sh(−,Z) sheaves of abelian groups over some site
Sh(S,Z) sheaves of abelian groups over the smooth Nisnevich site over S

Smcor
S category of smooth separated S-schemes of finite type

Smcor
S category of smooth finite correspondences over S

PShtr(S) presheaves with transfers (with Z- coefficients)
Shtr(S) sheaves with transfers (with Z- coefficients)
Ztr
S (X) sheaf with transfers represented by the smooth S-scheme X

R Hom(−,−) mapping space in a stable ∞-category

References

[AE17] B. Antieau and E. Elmanto. A primer for unstable motivic homotopy theory. In
Surveys on recent developments in algebraic geometry, volume 95 of Proc. Sympos.
Pure Math., pages 305–370. Amer. Math. Soc., Providence, RI, 2017.
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