The Mordell-Weil Theorem and Canonical Heights

Michał Mrugała

ENS Lyon

December 2, 2025

Mordell-Weil Theorem

Theorem (Weak Mordell-Weil)

Let $n \in \mathbb{Z}_{>0}$, then A(K)/nA(K) is finite.

descent via heights

Theorem (Strong Mordell-Weil)

A(K) is a finitely generated abelian group.

Proof Idea

Wish 1

We have a (semi)norm $\|\cdot\|$ on A(K).

Claim

A(K) is generated by $\{x \in A(K) : ||x|| \le B\}$ for some B.

Wish 2

The set $\{x \in A(K) : ||x|| \le B\}$ is finite.

Proof of Claim: Descent!

- **1** Fix n > 2.
- ② By Weak Mordell–Weil A(K)/nA(K) is finite. So there is a ball of finite radius C intersecting all cosets.
- **3** Let $z \in A(K)$. We can write z = nx + y with ||y|| < C.
- **1** Then $||x|| = \frac{||z-y||}{n} \le \frac{||z||+C}{2}$.
- **5** Fix $\varepsilon > 0$.
- **10** When $||z|| \gg C$ we have $C < ||z|| \varepsilon$ and $||x|| < ||z|| \varepsilon$.
- Hence B exists by descent!

Enter Heights

Let \mathcal{L} be a line bundle on A and $h_{\mathcal{L}}$ be the associated height.

- **1** If \mathcal{L} is ample, the set $\{x \in A(K) : h_{\mathcal{L}}(x) \leq B\}$ is finite for all B.
- ② If A = E is an elliptic curve, \mathcal{L} corresponds to a multiple of (0) and $d \in \mathbb{Z}$ then $h_{\mathcal{L}}$ is a quadratic form up to O(1).
- **③** If \mathcal{L} is generated by its global sections then $h_{\mathcal{L}} \geq 0$ up to O(1).
- **4** We only dealt with $h_{\mathcal{L}}$ up to O(1).

Question 1

Is there a height $h_{\mathcal{L}}+O(1)$ which is a positive semidefinite quadratic form up to O(1)?

Question 2

Is there a representative $\widetilde{h}_{\mathcal{L}}$ of $h_{\mathcal{L}}+O(1)$ which is a bona fide positive semidefinite quadratic form?

Approximating a quadratic form

If $h_{\mathcal{L}}$ is a quadratic form it certainly has to satisfy

1
$$h_{\mathcal{L}}(dx) = d^2 h_{\mathcal{L}}(x) + O(1),$$

Recall that $h_{\mathcal{L}}$ is functorial and additive in \mathcal{L} up to O(1), so it suffices to show that

$$(\mathsf{pr}_1 + \mathsf{pr}_2)^* \mathcal{L} \otimes (\mathsf{pr}_1 - \mathsf{pr}_2)^* \mathcal{L} = \mathsf{pr}_1^* \mathcal{L}^{\otimes 2} \otimes \mathsf{pr}_2^* \mathcal{L}^{\otimes 2}.$$

To find such an \mathcal{L} we have to recall some standard facts about line bundles on abelian varieties.

Theorem of the Cube

Theorem

Let X, Y, Z be varieties with X, Y complete.

Let x, y, z be k-points of X, Y, Z and \mathcal{L} be a line bundle on $X \times Y \times Z$. Suppose that the restriction of \mathcal{L} to each of

$$\{x\} \times Y \times Z, X \times \{y\} \times Z, X \times Y \times \{z\}$$

is trivial, then so is \mathcal{L} .

Consequences

Corollary

Let X be an abelian variety, $\mathcal L$ be a line bundle on X. For any variety Y and $f,g,h:X\to Y$

$$(f+g+h)^*\mathcal{L}\simeq (f+g)^*\mathcal{L}\otimes (g+h)^*\mathcal{L}\otimes (h+f)^*\mathcal{L}\otimes f^*\mathcal{L}^\vee\otimes g^*\mathcal{L}^\vee\otimes h^*\mathcal{L}^\vee.$$

Corollary

$$[d]^*\mathcal{L}\simeq \mathcal{L}^{\otimes rac{d(d+1)}{2}}\otimes (i^*\mathcal{L})^{\otimes rac{d(d-1)}{2}}.$$

So we need ${\cal L}$ to at least be ample and symmetric. In fact, by the Theorem of the Cube:

Corollary

If \mathcal{L} is ample and symmetric, then $h_{\mathcal{L}}$ is a positive semidefinite quadratic form up to O(1).

Getting Rid of O(1)

Lemma. (Tate). Let S be a set and $\pi: S \to S$ a map. Let f be a real-valued function on S such that $f \circ \pi = \lambda f + O(1)$, with $\lambda > 1$. Then there is a unique function \tilde{f} on S such that

- (a) $\bar{f} = f + O(1)$
- (b) $\tilde{f} \circ \pi = \lambda \tilde{f}$ and we have

$$\tilde{f}(x) = \lim_{n \to \infty} (1/\lambda^n) f(\pi^n x), \text{ for every } x \in S.$$

Theorem. (Néron-Tate). Let A be an abelian variety over \bar{K} . There is a unique function $c \mapsto \bar{h}_c$ on $\operatorname{Pic}(A)$ with values in the space of real valued functions on $A(\bar{K})$ such that,

- 1) $\tilde{h}_c(x) = h_c(x) + O(1)$.
- 2) Additivity: $\tilde{h}_{c_1+c_2} = \tilde{h}_{c_1} + \tilde{h}_{c_2}$.
- 3) Functoriality: for all endomorphisms $\phi: A \to A$, we have

$$\tilde{h}_{\phi \bullet c} = \tilde{h}_c \circ \phi \quad \text{for} \quad c \in \text{Pic}(A).$$

Further if B is another abelian variety and $\psi: B \to A$ is a homomorphism, then

$$\tilde{h}_{\psi \bullet c} = \tilde{h}_c \circ \psi \quad \text{for all } c \in \text{Pic}(A).$$

Properties of heights

From the theorem of the cube we see that if $\mathcal L$ is antisymmetric $\widetilde h_{\mathcal L}$ is linear.

Theorem 4.3. Let $A/\overline{\mathbb{Q}}$ be an abelian variety, and let \mathscr{L} be an invertible sheaf on A.

(a) There is a unique function

$$\hat{h}_{\mathcal{L}}\colon A\to \mathbb{R}$$

with the following properties:

(i) $\hat{h}_{\mathcal{L}}$ is a quadratic function (i.e. the map

$$\langle , \rangle : A \times A \to \mathbb{R},$$

 $\langle P, O \rangle = \hat{h}_{\varphi}(P + O) - \hat{h}_{\varphi}(P) - \hat{h}_{\varphi}(O)$

is bilinear.)

- (ii) $\hat{h}_{\mathscr{L}} = h_{\mathscr{L}} + O(1)$ on A.
- (b) Assume now that \mathcal{L} is ample and symmetric. Then
 - (i) $\hat{h}_{\mathscr{L}}(P) \geq 0$ for all $P \in A$.
 - (ii) $\hat{h}_{\varphi}(P) = 0$ if and only if P is a point of finite order.
 - (iii) More generally, $\hat{h}_{\mathscr{L}}$ is a positive definite quadratic form on $A(\bar{\mathbb{Q}}) \otimes \mathbb{R}$.

Non-degeneracy

We will prove a slightly more general version:

Theorem. Suppose that A is defined over $\bar{\mathbf{Q}}$. If c is ample, the quadratic part of \tilde{h}_c is a positive non-degenerate form on $V = A(\bar{\mathbf{Q}})/A(\bar{\mathbf{Q}})_{tors}$.

dimensional subspaces $V' \leq V$ the form is non-degenerate on $V' \otimes \mathbb{R}$. WLOG, \mathcal{L} is symmetric and $V' = A(K) \otimes \mathbb{Q}$. By Northcott's Theorem, the set $\{x \in A(K) \otimes \mathbb{Q} : \widetilde{h}_{\mathcal{L}}(x) \leq B\}$ is finite for

Recall that a quadratic form on V is non-degenerate iff for all finite

- **1** Let $V' \otimes \mathbb{R} \simeq \mathbb{R}^n$ such that $V' \simeq \mathbb{Z}^n$. If $\widetilde{h}_{\mathcal{L}}$ is degenerate, it comes from a projection $\pi : \mathbb{R}^n \to \mathbb{R}^{n-1}$. By Northcott the restriction $\pi|_{\mathbb{Z}^n}$ is injective.
- ② By (1), $\pi(\mathbb{Z}^n)$ is not discrete, so there is a sequence of points $v_i \in \mathbb{Z}^n$ such that $\widetilde{h}_{\mathcal{L}}(v_i) \to 0$, contradicting Northcott.

all B.

Proof of Weak Mordell-Weil

Since to deduce Strong Mordell-Weil it suffices to prove Weak Mordell-Weil for some n and K I will assume that $A[n](K) = A[n](\overline{K})$.

- For $a \in A(K)$ choose $b \in A(\overline{K})$ such that nb = a. For $\sigma \in G = \operatorname{Gal}(\overline{K}/K)$ define $\varphi_a(\sigma) = \sigma b - b$. This defines an injection $\Phi : A(K)/nA(K) \hookrightarrow \operatorname{Hom}(G, A[n](K))$.
- ② There is an open subset $\operatorname{Spec}(R) \subset \operatorname{Spec}(\mathcal{O}_K)$ such that A extends to an abelian scheme \mathcal{A} over $\operatorname{Spec}(R)$ and n is invertible in R.
- **③** For a ∈ A(K), the normalization of R in $K(n^{-1}a)$ is étale over R. Hence $K(n^{-1}a)$ is unramified over R.
- Each φ_a factor through an abelian extension of exponent n, unramified over R.
- **1** The maximal abelian extension K' of exponent n, unramified over R is finite over K. Then Φ factors through $\operatorname{Hom}(\operatorname{Gal}(K'/K), A[n](K))$.

A Cultural Remark

We have a short exact sequence of $Gal(\overline{K}/K)$ -modules

$$0 \longrightarrow A[n](\overline{K}) \longrightarrow A(\overline{K}) \stackrel{\times n}{\longrightarrow} A(\overline{K}) \longrightarrow 0.$$

Blackboard computations in progress. . .

Which results in the fundamental exact sequence

$$0 \, \longrightarrow \, A(K)/nA(K) \, \longrightarrow \, \mathsf{Sel}^m(A;k) \, \longrightarrow \, \mathrm{III}(A;k)[m] \, \longrightarrow \, 0$$

Which results in the fundamental exact sequence

$$0 \longrightarrow A(K)/nA(K) \longrightarrow Sel^{m}(A;k) \longrightarrow III(A;k)[m] \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
???? finite and computable ????