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February 12, 2021
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We are going to introduce cycle modules (and before that, cycle
premodules) which generalize Milnor K -theory, with
ϕ∗ : {a1, . . . , an} 7→ {ϕ(a1), . . . , ϕ(an)}, ϕ∗ (the degree Z→ Z, the norm
E ∗ → F ∗, etc.), (ring) product and residue morphism ∂v .

(Other examples are Quillen K -theory and Galois cohomology.)

We are going to study de Rham cohomology as an example.
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Cycle premodules The data of cycle premodules and cycle modules

From now on, k is a field and B is the base scheme, it is the
(semi-)localization of a separated scheme of finite type over k at a finite
(e.g. empty) family of points, or more generally the limit of étale
morphisms between separated schemes of finite type over k .

Our schemes X will be “localizations”of separated B-schemes of finite
type over k in the same sense.

Definition

A field over B is a field F with a morphism Spec(F )→ B such that
Spec(F )→ B → Spec(k) is the spectrum of a finitely generated extension.
A B-field extension ϕ : F → E is a field extension whose spectrum is a
morphism of B-schemes.
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Cycle premodules The data of cycle premodules and cycle modules

Definition

A valuation over B is a non-trivial discrete valuation v : F ∗ → Z with a
morphism Spec(Ov )→ B such that k ⊂ Ov and such that F = Frac(Ov )
and κ(v) = OV /m are finitely generated extensions of k . (Note that F
and κ(v) are fields over B.)

We will most often consider normalized (i.e. surjective) discrete valuations.

For example, you can take Ov = OX ,x with x a point of codimension one
in a smooth k-scheme X .
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Cycle premodules The data of cycle premodules and cycle modules

Definition

M is a cycle premodule over B if for all fields F over B, M(F ) is an

abelian group with a Z-grading (M(F ) =
⊕
n∈Z

Mn(F )) with :

D1 for all B-field extensions ϕ : F → E we have a restriction morphism
ϕ∗ : M(F )→ M(E ) of degree 0, also denoted rE/F ;

D2 for all finite B-field extension ϕ : F → E we have a corestriction
morphism ϕ∗ : M(E )→ M(F ) of degree 0, also denoted cE/F ;

D3 for all field F over B, the abelian group M(F ) is a left K∗F -module
such that the product respects the gradings
(KnF •Mm(F ) ⊂ Mn+m(F ));

D4 for all valuation v : F ∗ → Z over B, we have a residue morphism
∂v : M(F )→ M(κ(v)) of degree −1
satisfying some rules.
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Clémentine Lemarié–Rieusset The axiomatic of Rost cycle modules I February 12, 2021 7 / 35



Cycle premodules The data of cycle premodules and cycle modules

Definition

M is a cycle premodule over B if for all fields F over B, M(F ) is an

abelian group with a Z-grading (M(F ) =
⊕
n∈Z

Mn(F )) with :

D1 for all B-field extensions ϕ : F → E we have a restriction morphism
ϕ∗ : M(F )→ M(E ) of degree 0, also denoted rE/F ;

D2 for all finite B-field extension ϕ : F → E we have a corestriction
morphism ϕ∗ : M(E )→ M(F ) of degree 0, also denoted cE/F ;

D3 for all field F over B, the abelian group M(F ) is a left K∗F -module
such that the product respects the gradings
(KnF •Mm(F ) ⊂ Mn+m(F ));

D4 for all valuation v : F ∗ → Z over B, we have a residue morphism
∂v : M(F )→ M(κ(v)) of degree −1
satisfying some rules.
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Cycle premodules The data of cycle premodules and cycle modules

Definition

If M is a cycle premodule over B and π is a prime of v (i.e. m = (π)), we
have a specialization morphism of degree 0

sπv :

{
M(F ) → M(κ(v))
ρ 7→ ∂v ({−π} • ρ)

(this uses D3 and D4).
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Cycle premodules de Rham cohomology and the rules of cycle premodules
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Cycle premodules de Rham cohomology and the rules of cycle premodules

From now on, k ⊂ F is an extension of fields of characteristic zero.

Definition

The vector space of 1-differential forms (or Kähler differentials), denoted

by Ω1
F/k , is the quotient of

⊕
f ∈F

Fdf by the sub-F -vector space generated

by the dλ, λ ∈ k, the d(f0 + f1)− df0 − df1 and the
d(f0f1)− f0.df1 − f1.df0, f0, f1 ∈ F . The differentiation is the k-linear map

d0 :

{
F → Ω1

F/k

f 7→ df
(it satisfies the Leibniz rule).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

Universal property of the F -vector space of Kähler differentials.

F
d //

d0

��

M

Ω1
F/k

∃ϕ

==

with M an F -vector space, d a k-linear map satisfying the Leibniz rule,
and ϕ the unique F -linear map given by the universal property.
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Cycle premodules de Rham cohomology and the rules of cycle premodules

Definition

Let n ≥ 2. The vector space of n-differential forms, denoted by Ωn
F/k , is

the exterior product of n copies of Ω1
F/k , i.e. it is the quotient of the tensor

product over F of n copies of Ω1
F/k by the sub-F -vector space generated by

the x1 ⊗ · · · ⊗ xn with i 6= j such that xi = xj . The differentiation is dn−1 :

Ωn−1
F/k → Ωn

F/k∑
i∈I

f0,id0(f1,i ) ∧ · · · ∧ d0(fn,i ) 7→
∑
i∈I

d0(f0,i ) ∧ d0(f1,i ) ∧ · · · ∧ d0(fn,i )

(it is well-defined and verifies dn−1 ◦ dn−2 = 0).

The de Rham complex, denoted by Ω∗(F/k), is the complex of differential
forms and differentiations as above. For all n ∈ N, we define
Hn
dR(F/k) := Hn(Ω∗(F/k)) = Ker dn/ Im dn−1 (the associated n-th

cohomology group (d−1 being the zero map by convention)).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

If F is a field over Spec(k) then M(F ) =
⊕
n∈N

Hn
dR(F/k) (it is a Z-grading

with terms zero in negative degree).

D1) If ϕ : F → E is a k-field extension then we define ϕ∗ : M(F )→ M(E )
by : (ϕ∗)

n
n : Hn

dR(F/k)→ Hn
dR(E/k) is the morphism deduced from the

morphism Ωn
F/k → Ωn

E/k which verifies

f0d0(f1) ∧ · · · ∧ d0(fn) 7→ ϕ(f0)d0(ϕ(f1)) ∧ · · · ∧ d0(ϕ(fn)).

(Such a morphism exists because of the universal properties of the vector
space of Kähler differentials and of the exterior product.)
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Cycle premodules de Rham cohomology and the rules of cycle premodules

D2) Let ϕ : F → E be a finite k-field extension of (finite) Galois closure E
(we have ψ : E → E and ψ ◦ϕ : F → E is Galois). Denote G = Gal(E/F ).

We have a group action of G on Hn
dR(E/k) given by

σ•
∑
i∈I

f0,id0(f1,i ) ∧ · · · ∧ d0(fn,i ) =
∑
i∈I

σ(f0,i )d0(σ(f1,i )) ∧ · · · ∧ d0(σ(fn,i )))

Note that for all n ∈ N, Hn
dR(E/k)G ' Hn

dR(F/k) (canonically).

We define Tr(ω) =
∑
σ∈G

σ • ω and ϕ∗ = Tr ◦ ψ∗ (via the isomorphism).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

The first set of rules is the following :

R1a) Whenever defined, (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗;
R1b) Whenever defined, (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗;
R1c) If ψ : F → L is a B-field extension and ϕ : F → E is a finite B-field
extension, R = L⊗F E , then
ψ∗ ◦ ϕ∗ =

∑
p∈Spec(R)

length(Rp) • (ϕp)∗ ◦ (ψp)∗ with ϕp : L→ R/p and

ψp : E → R/p the canonical morphisms (ϕp is finite since ϕ is)

Note that R1c) implies R2e) If ϕ : E → F is a finite and totally
inseparable B-field extension then ϕ∗ ◦ ϕ∗ = deg(ϕ) • Id.
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Cycle premodules de Rham cohomology and the rules of cycle premodules

For D3, let F be a k-field.
If m ∈ Z, define an additive morphism m• by
m • (f0d0(f1) ∧ · · · ∧ d0(fn)) = mf0d0(f1) ∧ · · · ∧ d0(fn).

If f ′1 , . . . , f
′
l ∈ F ∗, define an additive morphism {f ′1 , . . . , f ′l }• by

{f ′1 , . . . , f ′l } • (f0d0(f1) ∧ · · · ∧ d0(fn)) =

f0f
′−1

1 . . . f
′−1
l d0(f ′1) ∧ · · · ∧ d0(f ′l ) ∧ d0(f1) ∧ · · · ∧ d0(fn).

(It is well defined since for all f ∈ F ∗ \ {1},
f −1(1− f )−1df ∧ d(1− f ) = −f −1(1− f )−1df ∧ df = 0)
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Cycle premodules de Rham cohomology and the rules of cycle premodules

The second set of rules is the following :

R2a) Whenever defined, ϕ∗(x • ρ) = ϕ∗(x) • ϕ∗(ρ);
R2b) Whenever defined, ϕ∗(ϕ∗(x) • µ) = x • ϕ∗(µ);
R2c) Whenever defined, ϕ∗(y • ϕ∗(ρ)) = ϕ∗(y) • ρ

Note that in the expressions ϕ∗(x) and ϕ∗(y), the morphisms are the ones
from Milnor K -theory (for instance, ϕ∗ is the identity of Z or the
morphism induced by ϕ).

Note that R2c) implies R2d) If ϕ : E → F is a finite B-field extension then
ϕ∗ ◦ ϕ∗ = deg(ϕ) • Id.
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Cycle premodules de Rham cohomology and the rules of cycle premodules

For D4, let us describe
(∂v )1

0 : H1
dR(F/k)→ H0

dR(κ(v)/k) ' H0
dR(k/k) ' k , with v a

Spec(k)-valuation of ring Ov (hence F = Frac(Ov )) and residual field
κ(v) ' k (by hypothesis).

We will construct a morphism ∂ :
⊕
f ∈F

Fdf → κ(v) which will induce a

morphism ∂v : H1
dR(F/k) = Ker(d1)/ Im(d0)→ Ker(d0) = H0

dR(κ(v)/k).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

Note that Ôv is a complete discrete valuation ring such that its residual
field κ(v) and its fraction field are of characteristic zero, hence

Ôv ' κ(v)[[X ]] and Fv := Frac(Ôv ) ' κ(v)((X )).
Let’s denote by π a prime of v and by ψ : F → Fv the canonical
morphism. For each f ∈ F , there is a unique m ∈ Z ∪ {+∞} and a unique

decomposition ψ(f ) =
∑
n≥m

anπ
n such that am 6= 0.

∂ :


⊕
f ∈F

Fdf → κ(v)∑
i∈I

fidgi 7→
∑

i∈I ,k∈Z
ai ,−k kbi ,k

(with ψ(fi ) =
∑
n≥ni

ai ,nπ
n and

ψ(gi ) =
∑
n≥mi

bi ,nπ
n, i.e. the sum of the residues of fig

′
i ).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

To define ∂v :
⊕
n∈N

Hn
dR(F/k)→

⊕
n∈N

Hn
dR(κ(v)/k), we use

hypercohomology.

First, for a k-scheme X we define Ω1
X/k and Ω1

X/k . Let ∆ : X → X ×k X

be the diagonal : it is an immersion, so X is isomorphic to a subscheme
(Y ,OY ) of X ×k X ; let U be the biggest open of X ×k X in which Y is
closed, and I be the sheaf of ideals defining the closed subscheme
(Y ,OY ) of (U,OU); I/I2 is an OX×kX/I-module, i.e. an OY -module,
i.e. an OX -module. We define Ω1

X/k to be this OX -module.

We define Ωn
X/k to be the Zariski sheaf associated to the presheaf

U 7→ Λn(Ω1
U/k), with Λ0(Ω1

U/k) = OU and Λ1(Ω1
U/k) = Ω1

U/k .
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Cycle premodules de Rham cohomology and the rules of cycle premodules

Now let us take Ov = OX ,x with x a point of codimension one in a

smooth k-scheme X and Z := {x} smooth over k (by replacing X by a
suitable open neighbourhood of x and Z by Z ∩ U if need be).

For F a Zariski sheaf of complexes of OX -modules (for instance
F = Ω∗X/k), we define Γ(X ,F ) = F (X ) and

ΓZ (X ,F ) = {ρ ∈ F (X ), ∀x ∈ Z , ρx = 0}, and Hn
Zar (X ,F ) (resp.

Hn
Z ,Zar (X ,F )) to be the n-th right derived functor of Γ(X ,F ) (resp.

ΓZ (X ,F )). We define Hn
dR(X ) = Hn

Zar (X ,Ω∗X/k) and

Hn
dR(X ,Z ) = Hn

Z ,Zar (X ,Ω∗X/k).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

We have the de Rham localization sequence :

0 // H0
dR(X ,Z ) // H0

dR(X ) // H0
Zar (X \ Z ,Ω∗X/k)

d0 // H1
dR(X ,Z )

· · · → Hn
dR(X ,Z ) // Hn

dR(X ) // Hn
Zar (X \ Z ,Ω∗X/k)

dn // Hn+1
dR (X ,Z )

We define (∂v )nn−1 to be dn via the isomorphisms

Hn
Zar (X \ Z ,Ω∗X/k) ' Hn

dR(F ) and Hn+1
dR (X ,Z ) ' Hn−1

dR (Z ) ' Hn−1
dR (κ(v))

(thanks to a purity result and the facts that OX ,Z = Ov and κ(Z ) = κ(v)

(since Z = {x}, OX ,x = Ov and F = Frac(Ov ))).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

The third set of rules is the following :

R3a) If v : F ∗ → Z is a valuation over B and ϕ : E → F is a B-field
extension such that w = v ◦ ϕ is a valuation over B then, denoting
ϕ : κ(w)→ κ(v) the morphism induced by ϕ, we have
∂v ◦ ϕ∗ = |v(F )/w(E )| • ϕ∗ ◦ ∂w ;
R3b) If v : F ∗ → Z is a valuation over B and ϕ : F → E is a finite B-field

extension then we have ∂v ◦ ϕ∗ =
∑
w

ϕ∗w ◦ ∂w ;

R3c) If v : F ∗ → Z is a valuation over B and ϕ : E → F is a B-field
extension such that v ◦ ϕ = 0 then ∂v ◦ ϕ∗ = 0;
R3d) If v : F ∗ → Z is a valuation over B and ϕ : E → F is a B-field
extension such that v ◦ ϕ = 0, and if π is a prime of v , then, denoting
ϕ : E → κ(v) the morphism induced by ϕ, we have sπv ◦ ϕ∗ = ϕ∗;
R3e) If v : F ∗ → Z is a valuation over B, u ∈ Ov is a unit, of class
u ∈ κ(v), and ρ ∈ M(F ), then ∂v ({u} • ρ) = −{u} • ∂v (ρ).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

Note that R3e) implies R3f) If v : F ∗ → Z is a valuation over B, π is a
prime of v , x ∈ KnF , and ρ ∈ M(F ), then
∂v (x • ρ) = ∂v (x) • sπv (ρ) + (−1)nsπv (x) • ∂v (ρ) + {−1}∂v (x) • ∂v (ρ) and
sπv (x • ρ) = sπv (x) • sπv (ρ).
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Cycle premodules Morphisms of cycle premodules
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Cycle premodules Morphisms of cycle premodules

Definition

A morphism ω : M → M ′ of cycle premodules over B of even type
(respectively of odd type) is given by morphisms ωF : M(F )→ M ′(F ) of
degree 0 which are even : ωF (−x) = ωF (x) (respectively odd :
ωF (−x) = −ωF (x)) and satisfy :
ϕ∗ ◦ ωF = ωE ◦ ϕ∗;
ϕ∗ ◦ ωE = ωF ◦ ϕ∗;
{a} • ωF (ρ) = ωF ({a} • ρ) which implies
{a1, . . . , an} • ωF (ρ) = ωF ({a1, . . . , an} • ρ) (respectively
{a} • ωF (ρ) = −ωF ({a} • ρ) which implies
{a1, . . . , an} • ωF (ρ) = (−1)nωF ({a1, . . . , an} • ρ));
∂v ◦ ωF = ωκ(v) ◦ ∂v (respectively ∂v ◦ ωF = −ωκ(v) ◦ ∂v ).
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Cycle modules Definitions
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Cycle modules Definitions

From now on, if X is an irreducible scheme, we denote by ξX its generic
point.

If X is a normal and irreducible scheme then for each x ∈ X (1)

Ov := OX ,x is a discrete valuation ring, and we denote by ∂x the residue
morphism ∂v : M(κ(ξX ))→ M(κ(x)).

If X is a scheme and x , y ∈ X , we define ∂xy : M(κ(x))→ M(κ(y)) by : if

y 6∈ {x}(1)
then ∂xy = 0, else ∂xy =

∑
z

cκ(z)/κ(y) ◦ ∂z with z running

through the points (in finite number) of the normalization of {x} lying
over y .
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Cycle modules Definitions

Definition

M is a cycle module over B if M is a cycle premodule over B satisfying :

FD (finite support of divisors) For all normal and irreducible schemes X ,
ρ ∈ M(κ(ξX )) and all but finitely many x ∈ X (1), ∂x(ρ) = 0;

C (closedness) For all integral and local schemes X of dimension 2,

denoting x0 the closed point of X ,
∑

x∈X (1)

∂xx0
◦ ∂ξXx = 0.

Morphisms of cycle modules are morphisms of cycle premodules between
cycle modules.
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Note that in (FD), ∂x = ∂ξXx , that if x 6∈ X (1) then ∂ξXx = 0, and that
more generally (FD) implies that if y ∈ X , ρ ∈ M(κ(y)), then for all but
finitely many z ∈ X , ∂yz (ρ) = 0.

If X is an integral scheme which verifies (FD), we define

d : M(κ(ξX ))→
⊕

x∈X (1)

M(κ(x)) by d = (∂ξXx )x∈X (1) and

A0(X ;M) :=
⋂

x∈X (1)

ker(∂ξXx ).
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If M is a cycle module and F is a field over B then we have :

H (homotopy property for A1) We have the short exact sequence

0→ M(F )→ M(F (X ))→
⊕

x∈(A1
F )(0)

M(κ(x))→ 0, the second map

being rF (x)/F and the third map being d (with (A1
F )(0) the points of

A1
F whose closure is of dimension 0);

RC (reciprocity for curves) For each proper curve X over F we have

c ◦ d = 0, with c :


⊕

x∈X(0)

M(κ(x)) → M(F )

(ρi ∈ M(κ(xi ))) 7→
∑
i

cκ(xi )/F (ρi )
.
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Cycle modules Additional properties of cycle modules

If M is a cycle module, X is a smooth and local scheme (we denote by x0

its closed point), Y → X is the blow-up of X at x0, v is the valuation
corresponding to the exceptional fiber over x0, then :

Co (continuity) A0(X ;M) ⊂ A0(Y ;M) i.e. ∂v (A0(X ;M)) = 0;

E (evaluation) There exists a unique morphism
ev : A0(X ;M)→ M(κ(x0)) such that for all prime π of v ,
rκ(v)/κ(x0) ◦ ev = sπv |A0(X ;M).
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Thanks for your attention !
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