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We are going to introduce cycle modules (and before that, cycle
premodules) which generalize Milnor K-theory, with

o« {at,...,ant = {p(a1),...,0(an)}, ¢* (the degree Z — Z, the norm
E* — F*, etc.), (ring) product and residue morphism 0, .

(Other examples are Quillen K-theory and Galois cohomology.)

We are going to study de Rham cohomology as an example.
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[OSWINITI  The data of cycle premodules and cycle modules

From now on, k is a field and B is the base scheme, it is the
(semi-)localization of a separated scheme of finite type over k at a finite
(e.g. empty) family of points, or more generally the limit of étale
morphisms between separated schemes of finite type over k.

Our schemes X will be “localizations” of separated B-schemes of finite
type over k in the same sense.

Definition

A field over B is a field F with a morphism Spec(F) — B such that
Spec(F) — B — Spec(k) is the spectrum of a finitely generated extension.
A B-field extension ¢ : F — E is a field extension whose spectrum is a
morphism of B-schemes.
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[OSWINITI  The data of cycle premodules and cycle modules

Definition

A valuation over B is a non-trivial discrete valuation v : F* — Z with a
morphism Spec(O,) — B such that k C O, and such that F = Frac(O,)
and k(v) = Oy/m are finitely generated extensions of k. (Note that F
and k(v) are fields over B.)

We will most often consider normalized (i.e. surjective) discrete valuations.

For example, you can take O, = Ox x with x a point of codimension one
in a smooth k-scheme X.
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[OSWINITI  The data of cycle premodules and cycle modules
Definition

M is a cycle premodule over B if for all fields F over B, M(F) is an
abelian group with a Z-grading (M(F) = @5 Ma(F)) with :
neZ
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[OSWINITI  The data of cycle premodules and cycle modules
Definition

M is a cycle premodule over B if for all fields F over B, M(F) is an
abelian group with a Z-grading (M(F) = @5 Ma(F)) with :
neZ
D1 for all B-field extensions ¢ : F — E we have a restriction morphism
@« : M(F) — M(E) of degree 0, also denoted rg r;
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[OSWINITI  The data of cycle premodules and cycle modules

M is a cycle premodule over B if for all fields F over B, M(F) is an
abelian group with a Z-grading (M(F) = @ M, (F)) with :
neZ
D1 for all B-field extensions ¢ : F — E we have a restriction morphism
@« : M(F) — M(E) of degree 0, also denoted rg r;
D2 for all finite B-field extension ¢ : F — E we have a corestriction
morphism ¢* : M(E) — M(F) of degree 0, also denoted cg/F;
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[OSWINITI  The data of cycle premodules and cycle modules
Definition

M is a cycle premodule over B if for all fields F over B, M(F) is an
abelian group with a Z-grading (M(F) = @5 Ma(F)) with :
neZ
D1 for all B-field extensions ¢ : F — E we have a restriction morphism
@« : M(F) — M(E) of degree 0, also denoted rg r;

D2 for all finite B-field extension ¢ : F — E we have a corestriction
morphism ¢* : M(E) — M(F) of degree 0, also denoted cg/F;
D3 for all field F over B, the abelian group M(F) is a left K.F-module

such that the product respects the gradings
(KnF @ M (F) C Mpym(F)):

Clémentine Lemarié—Rieusset The axiomatic of Rost cycle modules | February 12, 2021 7/35



Cycle premodules The data of cycle premodules and cycle modules
Definition

M is a cycle premodule over B if for all fields F over B, M(F) is an
abelian group with a Z-grading (M(F) = @5 Ma(F)) with :
neZ
D1 for all B-field extensions ¢ : F — E we have a restriction morphism
@s : M(F) — M(E) of degree 0, also denoted rg /f;

D2 for all finite B-field extension ¢ : F — E we have a corestriction
morphism ¢* : M(E) — M(F) of degree 0, also denoted cg/F;

D3 for all field F over B, the abelian group M(F) is a left K.F-module
such that the product respects the gradings
(KnF @ M (F) C Mpym(F)):

D4 for all valuation v : F* — Z over B, we have a residue morphism
Oy : M(F) — M(x(v)) of degree —1
satisfying some rules.
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[OSWINITI  The data of cycle premodules and cycle modules

Definition

If M is a cycle premodule over B and 7 is a prime of v (i.e. m = (7)), we
have a specialization morphism of degree 0

L (MF) 5 M(s(v) N
sh { o a({—r}ep) (this uses D3 and D4).
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

From now on, k C F is an extension of fields of characteristic zero.

Definition
The vector space of 1-differential forms (or Kahler differentials), denoted

by QlF/k, is the quotient of @ Fdf by the sub-F-vector space generated

feF
by the dA, A € k, the d(fy + ;) — dfy — dfy and the

d(fofi) — fo.dfh — f1.dfy, fo, i € F. The differentiation is the k-linear map

F — Qt
do : {f = di;k (it satisfies the Leibniz rule).

Clémentine Lemarié—Rieusset The axiomatic of Rost cycle modules | February 12, 2021 10/35



(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

Universal property of the F-vector space of Kahler differentials.

F d

7
u
OJ/ 1 3

Q)

with M an F-vector space, d a k-linear map satisfying the Leibniz rule,
and ¢ the unique F-linear map given by the universal property.
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

Definition
Let n > 2. The vector space of n-differential forms, denoted by Q'I’E/k, is

the exterior product of n copies of Q}_-/k, i.e. it is the quotient of the tensor
product over F of n copies of Q}E/k by the sub-F-vector space generated by
the x; ® - - - ® x, with i # j such that x; = x;. The differentiation is d,_1 :
-1
Qi - Qi

Z foido(fi) A=+ Ado(Fni) +— Z do(fo,i) A do(fii) A=+ A do(fni)

il iel
(it is well-defined and verifies d,—1 0 d,—2 = 0).

The de Rham complex, denoted by Q*(F/k), is the complex of differential
forms and differentiations as above. For all n € N, we define

Hie(F/k) := H"(Q*(F /k)) = Kerd,/Im d,_1 (the associated n-th
cohomology group (d—;1 being the zero map by convention)).
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

If Fis a field over Spec(k) then M(F) = @ HJr(F/k) (it is a Z-grading
neN
with terms zero in negative degree).

D1) If ¢ : F — E is a k-field extension then we define ¢, : M(F) — M(E)
by : (@«)n: Hig(F/k) — Hjg(E/k) is the morphism deduced from the
morphism Qg/k — QE/k which verifies

fodo(f) A+ Ado(fn) = @(fo)do(p(f)) A= A do(o(fa)).

(Such a morphism exists because of the universal properties of the vector
space of Kahler differentials and of the exterior product.)
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

D2) Let ¢ : F — E be a finite k-field extension of (finite) Galois closure E
(we have ¢y : E — E and 0o : F — E is Galois). Denote G = Gal(E/F).

We have a group action of G on H'5(E/k) given by

UOZ fb7,'d0(f17,') VANEEIRIVAN dO(fnJ) = ZU(fO,i)dO(U(fl,i)) JANREIVAN do(O'(fm,')))

iel icl
Note that for all n € N, H.(E/k)¢ ~ H"-(F/k) (canonically).

We define Tr(w) = Z oew and ¢* = Tro 1, (via the isomorphism).
oeG

Clémentine Lemarié—Rieusset The axiomatic of Rost cycle modules | February 12, 2021 14 /35



Cycle premodules de Rham cohomology and the rules of cycle premodules

The first set of rules is the following :

R1a) Whenever defined, (¢ o @), = s 0 @y;

R1b) Whenever defined, (1) o p)* = ¢* o ¥*;

Rlc) If ¢ : F — L is a B-field extension and ¢ : F — E is a finite B-field

extension, R = L ®f E, then

Yot =Y length(R,) e (p)" o (¥p)« with g, : L — R/p and
pESpec(R)

Yp : E — R/p the canonical morphisms (i, is finite since ¢ is)

Note that R1c) implies R2e) If ¢ : E — F is a finite and totally
inseparable B-field extension then ¢, o o* = deg(y) o Id.
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

For D3, let F be a k-field.
If m € Z, define an additive morphism me by
me (ﬂ)do(fl) A A do(fn)) = mfodo(ﬂ) VANRIEIVAN do(fn).

If f/,...,f/ € F*, define an additive morphism {f{,...,f/}e by
{fll, RN f/} ° (fodo(fl) VANRERIVAN do(fn)) =

fof, 2o T o (F) A - A do(F) A do(R) A -+ A do(F)-

(It is well defined since for all f € F*\ {1},

fY1—f)"Ydf Ad(1—f)=—F1(1— f)"Ldf Adf =0)
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

The second set of rules is the following :

R2a) Whenever defined, p.(x ® p) = p.(x) ® v.(p);
R2b) Whenever defined, ¢*(¢.(x) @ 1) = x ® o*(1);
R2c) Whenever defined, o*(y @ 0«(p)) = ¢*(v) @ p

Note that in the expressions ¢.(x) and ¢*(y), the morphisms are the ones
from Milnor K-theory (for instance, ¢, is the identity of Z or the
morphism induced by ¢).

Note that R2c) implies R2d) If ¢ : E — F is a finite B-field extension then
@* 0 g, = deg(p) o Id.
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

For D4, let us describe

()} : His(F/k) — HO%(r(v)/k) ~ HO%(k/k) ~ k, with v a
Spec(k)-valuation of ring O, (hence F = Frac(O,)) and residual field
k(v) ~ k (by hypothesis).

We will construct a morphism 0 : @ Fdf — k(v) which will induce a

feF
morphism 9, : H3p(F/k) = Ker(d1)/Im(do) — Ker(do) = HIx(x(v)/k).
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

Note that a, is a complete discrete valuation ring such that its residual
field x(v) and its fraction field are of characteristic zero, hence

O, ~ k(v)[[X]] and F, := Frac(O,) ~ s(v)((X)).

Let's denote by 7 a prime of v and by ¥ : F — F,, the canonical
morphism. For each f € F, there is a unique m € Z U {+o0} and a unique

decomposition (f Z a,7" such that a,, # 0.
n>m
EB Fdf — k(v)
feF
Zfdg, - Z aiy Kbiy (with o (f; ;l aj pm" and
iel i€l ,keZ
v(gi) = Z bi nm", i.e. the sum of the residues of fig;).
n>m;
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

To define 9, : @) Hir(F/k) — €D Hig(r(v)/k), we use

neN neN
hypercohomology.

First, for a k-scheme X we define Qk/k and Q}(/k' Let A: X — X x, X
be the diagonal : it is an immersion, so X is isomorphic to a subscheme
(Y,Oy) of X xx X; let U be the biggest open of X xx X in which Y is
closed, and Z be the sheaf of ideals defining the closed subscheme
(Y,0y) of (U,0y); T/Z? is an Oxx,x/I-module, i.e. an Oy-module,
i.e. an Ox-module. We define Q}(/k to be this Ox-module.

We define Q}/k to be the Zariski sheaf associated to the presheaf

U A(QF ), with AO(QY ) = Oy and AY(QY, ) = Q.
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

Now let us take O, = Ox x with x a point of codimension one in a
smooth k-scheme X and Z := {x} smooth over k (by replacing X by a
suitable open neighbourhood of x and Z by Z N U if need be).

For F a Zariski sheaf of complexes of Ox-modules (for instance
F= Qj(/k) we define I'(X, F) = F(X) and

Fz(X,F) = {p € F(X), Vx € Z, px =0}, and H2_ (X, F) (resp.
H3 7.,(X, F)) to be the n-th right derived functor of (X, F) (resp.
Fz(X, F)). We define H]5(X) = H%,,(X,Q5%,,) and

H(,}R(Xv Z) Hg Zar(X QX/k)

X /k
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

We have the de Rham localization sequence :

d
0 = Hagr(X, Z) — Hgp(X) — HZ, (X \ Z QX/k) —> Hjr(X,2)

n n d"
= (X, Z) —— Hjp(X) —— HZ, (X \ Z,95 ) — Hgg'(X, 2)

We define (9,)n_; to be d, via the isomorphisms
HZ.(X\ Z,Q5 ) = Hig(F) and Hgg (X, Z) ~ Hgg'(Z) = Hgg™ (5(v))
(thanks to a purity result and the facts that Ox 7 = O, and k(Z) = k(v)
(since Z = {x}, Ox x = O, and F = Frac(0,))).
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Cycle premodules de Rham cohomology and the rules of cycle premodules

The third set of rules is the following :

R3a) If v: F* — Z is a valuation over B and ¢ : E — F is a B-field
extension such that w = v o ¢ is a valuation over B then, denoting

@ : k(w) — k(v) the morphism induced by ¢, we have

Oy o s = [v(F)/w(E)| @ ®, 0 Ow;

R3b) If v: F* — Z is a valuation over B and ¢ : F — E is a finite B-field
extension then we have 0, o o™ = Z Oy © Ows

R3c) If v: F* — Z is a valuation oyer B and ¢ : E — F is a B-field
extension such that v o ¢ = 0 then 0, o p, = 0;

R3d) If v: F* — Z is a valuation over B and ¢ : E — F is a B-field
extension such that vo o =0, and if 7 is a prime of v, then, denoting
¢ : E — k(v) the morphism induced by ¢, we have s} o ¢, = @,;
R3e) If v: F* — Z is a valuation over B, u € O, is a unit, of class

u € k(v), and p € M(F), then 0,({u} e p) = —{T} ¢ 0,(p).
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(OVSNIEITEIN de Rham cohomology and the rules of cycle premodules

Note that R3e) implies R3f) If v : F* — Z is a valuation over B, 7 is a
prime of v, x € K,F, and p € M(F), then

du(x e p) = 0y(x) @ s7(p) + (=1)"s7(x) @ Du(p) + {—1}0,(x) ® Os(p) and
sy(x e p) = sy(x) e sy (p).
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Cycle premodules Morphisms of cycle premodules
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Cycle premodules Morphisms of cycle premodules

Definition
A morphism w : M — M’ of cycle premodules over B of even type

(respectively of odd type) is given by morphisms wg : M(F) — M'(F) of

degree 0 which are even : wr(—x) = wr(x) (respectively odd :
wr(—x) = —wr(x)) and satisfy :

(Px O WF = WE 0 Py;

©* owg = wF 0 YT

{a} e wr(p) = we({a} e p) which implies

{a1,...,an} o wr(p) =we({a1,...,an} ® p) (respectively

{a} e wr(p) = —wr({a} @ p) which implies

{a1,...,an} o wr(p) = (—1)"we({a1,...,an} ® p));

Oy © WF = Wiy © Oy (respectively Oy o wr = —w,(y) © 9y).
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Cycle modules
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Cycle modules Definitions
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Cycle modules Definitions

From now on, if X is an irreducible scheme, we denote by £x its generic
point.

If X is a normal and irreducible scheme then for each x € X()
O, := Ox  is a discrete valuation ring, and we denote by Oy the residue
morphism 9, : M(k(£{x)) — M(k(x)).

If X is a scheme and x,y € X, we define 95 : M(x(x)) — M(x(y)) by : if
y & m(l) then 05 = 0, else 9) = Z Cr(z)/n(y) © Oz With z running

through the points (in finite number) of the normalization of {x} lying
over y.
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Cycle modules Definitions

M is a cycle module over B if M is a cycle premodule over B satisfying :
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Cycle modules Definitions

M is a cycle module over B if M is a cycle premodule over B satisfying :

FD (finite support of divisors) For all normal and irreducible schemes X,
p € M(k(€x)) and all but finitely many x € X, 9,(p) = 0;
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Cycle modules Definitions

M is a cycle module over B if M is a cycle premodule over B satisfying :

FD (finite support of divisors) For all normal and irreducible schemes X,
p € M(k(€x)) and all but finitely many x € X, 9,(p) = 0;
C (closedness) For all integral and local schemes X of dimension 2,
denoting xg the closed point of X, Z 8)’50 o a)ﬁ(x —0.
xex@

Morphisms of cycle modules are morphisms of cycle premodules between
cycle modules.
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Cycle modules Definitions

Note that in (FD), 8y = 0%, that if x & X(1) then 8% =0, and that
more generally (FD) implies that if y € X, p € M(x(y)), then for all but
finitely many z € X, 9%(p) = 0.

If X is an integral scheme which verifies (F D) we define
— P M(x(x)) by d = (3),cxw and

xeXx@)

m ker( 85)(

xeXxX(®)

31/35
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[GVCWIILTIEIl  Additional properties of cycle modules
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Cycle modules Additional properties of cycle modules

If M is a cycle module and F is a field over B then we have :
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Cycle modules Additional properties of cycle modules

If M is a cycle module and F is a field over B then we have :
H (homotopy property for A') We have the short exact sequence
0— M(F) = M(F(X)) — @ M(k(x)) — 0, the second map
XE(A}_-)(O)
being rr(x)/F and the third map being d (with (A}_—)(O) the points of
Al whose closure is of dimension 0);
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Cycle modules Additional properties of cycle modules

If M is a cycle module and F is a field over B then we have :

H (homotopy property for A') We have the short exact sequence
0— M(F) = M(F(X)) — @ M(k(x)) — 0, the second map
x€(A})(0)
being rr(«)/F and the third map belng d (with (A} )(0) the points of
Al whose closure is of dimension 0);

RC (reciprocity for curves) For each proper curve X over F we have

P Mx(x) - M(F)

XEX(O)

cod =0, with c:
(P/ € M ZC (xi)/F P:
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Cycle modules Additional properties of cycle modules

If M is a cycle module, X is a smooth and local scheme (we denote by xg
its closed point), Y — X is the blow-up of X at xp, v is the valuation
corresponding to the exceptional fiber over xp, then :
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Cycle modules Additional properties of cycle modules

If M is a cycle module, X is a smooth and local scheme (we denote by xg
its closed point), Y — X is the blow-up of X at xp, v is the valuation
corresponding to the exceptional fiber over xp, then :

Co (continuity) A°(X; M) C A%(Y; M) i.e. O,(A°(X; M)) = 0;
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Cycle modules Additional properties of cycle modules

If M is a cycle module, X is a smooth and local scheme (we denote by xg
its closed point), Y — X is the blow-up of X at xp, v is the valuation
corresponding to the exceptional fiber over xp, then :

Co (continuity) A°(X; M) C A%(Y; M) i.e. O,(A°(X; M)) = 0;
E (evaluation) There exists a unique morphism
ev: A°(X; M) — M(x(xp)) such that for all prime 7 of v,

Ta(v)/r(x0) © & = Sy a0(x:M)-
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[GVCWIILTIEIl  Additional properties of cycle modules

Thanks for your attention !
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