Table des matières

	des ma		1
1	Le gro	supe $\mathrm{H}^{2,2}_{\mathrm{Br}}(\mathrm{X},\underline{\mathbb{Z}})$	3
	1.1	Construction de Borel	3
	1.2	Descriptions en termes de fibrés en droites	5
2	Le gro	supe $H^2_{\mathbb{D}/\mathbb{R}}(X(\mathbb{C}),\mathbb{Z}(2))$	7
Biblio	graphie		11

Cohomologie de Deligne en degré 2

Le but de l'exposé est de donner une interprétation géométrique du groupe $H^2_{\mathcal{D}/\mathbb{R}}(X,\mathbb{Z}(2))$ où X désigne une variété algébrique réelle projective lisse.

Convention 0.1. La lettre G désigne sauf mention expresse du contraire le groupe de Galois de l'extension \mathbb{C}/\mathbb{R} . Soit \mathfrak{G} un groupe. Sauf mention expresse du contraire, par \mathfrak{G} -ensemble (ou \mathfrak{G} -espace), nous entendons \mathfrak{G} -espace à gauche.

1. Le groupe $H^{2,2}_{Br}(X, \underline{\mathbb{Z}})$

1.1 Construction de Borel

Soit \mathfrak{G} un groupe. Si X et Y sont des \mathfrak{G} -espaces, le groupe \mathfrak{G} agit sur le produit X × Y par g(x,y)=(gx,gy) pour tout $g\in\mathfrak{G}$ et tout $(x,y)\in X\times Y$: c'est l'action diagonale de \mathfrak{G} sur X × Y.

Définition 1.1. Le produit contracté de X et Y est $X \times_{\mathfrak{G}} Y = (X \times Y)/\mathfrak{G}$, l'espace quotient de $X \times Y$ par l'action diagonale de \mathfrak{G} .

Désormais, le groupe \mathfrak{G} est un CW-complexe localement fini (par exemple, \mathfrak{G} est fini muni de la topologie discrète) ou une variété. Rappelons qu'il existe un espace contractile $E\mathfrak{G}$ sur lequel \mathfrak{G} agit librement et tel que la flèche de $E\mathfrak{G}$ vers $B\mathfrak{G} = E\mathfrak{G}/\mathfrak{G}$ est une fibration localement triviale de fibre \mathfrak{G}^1 . L'espace $B\mathfrak{G}$ est l'espace classifiant du groupe \mathfrak{G} car il classifie les \mathfrak{G} -fibrés principaux : si X est un espace topologique (raisonnable, par exemple un CW-complexe localement fini ou une variété), la donnée d'un \mathfrak{G} -fibré principal est équivalente à la donnée d'un élément de $[X, B\mathfrak{G}]$, l'ensemble des classes d'homotopie d'applications continues de X vers $B\mathfrak{G}$, la bijection étant induite par la construction du tiré en arrière par une application continue $X \to B\mathfrak{G}$ du fibré $E\mathfrak{G} \to B\mathfrak{G}$.

Définition 1.2. Soit X un \mathfrak{G} -espace. L'espace des orbites homotopique de X est $X//\mathfrak{G} = E\mathfrak{G} \times_{\mathfrak{G}} X$.

Remarque. L'espace $X//\mathfrak{G}$ est une correction homotopique du quotient par la \mathfrak{G} -action. Plus précisément, il n'est pas vrai en général que si $f: X \to Y$ est une application équivariante entre \mathfrak{G} -espaces qui est une équivalence d'homotopie (en oubliant les \mathfrak{G} -actions), alors l'application $X/\mathfrak{G} \to Y/\mathfrak{G}$ qu'elle induit entre quotients naïfs est une équivalence d'homotopie : il suffit pour s'en convaincre de considérer $X = \mathbb{R}$ muni de l'action de \mathbb{Z} par translation, et Y = * muni (forcément!) de l'action triviale de \mathbb{Z} . Notons que du point de vue de la théorie de l'homotopie classique, les espaces $E\mathfrak{G} \times X$ et X sont indiscernables puisque $E\mathfrak{G}$ est contractile ; en revanche, puisque l'action de \mathfrak{G} sur $E\mathfrak{G}$ est libre, c'est aussi le cas de son action sur \mathfrak{G} sur $E \times X$: en effet, si l'action de \mathfrak{G} sur $E\mathfrak{G}$ est libre, alors la flèche $X//\mathfrak{G} \to X/\mathfrak{G}$ induite par la projection $E\mathfrak{G} \times X \to X \to X/\mathfrak{G}$ est une équivalence d'homotopie. La situation est analogue à celle de la cohomologie relative, qui coïncide avec la cohomologie du quotient dans le cas de bonnes paires comme les $E\mathfrak{G}$ -complexes et leurs sous-complexes.

^{1.} C'est inexact si & est trop pathologique.

^{2.} De même, le quotient d'une variété par l'action d'un groupe de Lie est une variété lorsque l'action est libre.

^{3.} Cette remarque est tirée d'une discussion sur le site Mathematics Stack Exchange, disponbile à l'adresse URL suivante : https://math.stackexchange.com/questions/2757214/interpretation-of-borel-equivariant-cohomology. D'autres motivations pour introduire l'espace X//& y sont également données.

Remarque. On appelle aussi le \mathfrak{G} -espace $E\mathfrak{G} \times_{\mathfrak{G}} X$ la construction de Borel de X. En effet, la cohomologie équivariante de Borel $H^*_{Bor}(X, A)$ à coefficients dans un groupe abélien A est définie par

$$H_{Bor}^*(X, A) = H^*(E\mathfrak{G} \times_{\mathfrak{G}} X, A)$$

où H*(-, A) désigne la cohomologie singulière à coefficients dans A. La cohomologie de Borel est très utile (par exemple, elle est employée, avec coefficients tordus, par Benoist et Wittenberg dans [Oli20]) mais, par exemple, elle ne permet pas de développer une théorie de l'obstruction.

Nous supposons désormais le groupe $\mathfrak G$ fini. Soit $\mathfrak h^*$ une théorie cohomologique équivariante ⁴ définie sur la catégorie des $\mathfrak G$ -espaces.

Définition 1.3. La cohomologie de Borel associée à \mathfrak{h}^* est la théorie cohomologique équivariante \mathfrak{h}^*_{Bor} donnée par $\mathfrak{h}^*_{Bor}(X) = \mathfrak{h}^*(E\mathfrak{G} \times X)$.

Remarque. Comme E \mathfrak{G} est contractile, « il ne se passe rien » au niveau homotopique en passant de \mathfrak{h}^* à $\mathfrak{h}^*_{\mathrm{Bor}}$: la différence se situe au niveau des \mathfrak{G} -actions puisque comme nous l'avons signalé précédemment, la \mathfrak{G} -action sur E \mathfrak{G} \times X est libre car c'est le cas de la \mathfrak{G} -action sur E \mathfrak{G} .

Remarque. Si $H^*_G(-, \underline{\mathbb{Z}})$ désigne la cohomologie définie par Bredon dans [Bre67] ⁵, alors $H^*_{Bor}(X, \mathbb{Z}) = H^*_G(E\mathfrak{G} \times X, \underline{\mathbb{Z}})$ est la cohomologie de Borel associée à H^*_G .

Nous notons $H_{Bor}^{*,*}(-,-)$ la cohomologie de Borel associée à la cohomologie $H_{Br}^{*,*}(-,-)$ de Bredon.

Rappelons des notations. L'anneau RO(G) s'identifie à $\mathbb{Z}\mathbf{1}\oplus\mathbb{Z}\xi$ où ξ est la classe de la représentation signe. La cohomologie de Bredon $H^{*,*}_{Br}(-,\mathbb{Z})$ est représentable par des espaces d'Eilenberg-Mac Lane équivariants : plus précisément, il existe, pour tous entiers $n\geqslant p$, un G-espace pointé $K(\underline{\mathbb{Z}},(n,p))$ et un isomorphisme $H^{n,p}_{Br}(X,\mathbb{Z})=[X_+,K(\underline{\mathbb{Z}},(n,p))]_G$ naturel en X, où $[Y,Z]_G$ désigne l'ensemble des classes d'homotopie pointée d'applications G-équivariantes pointées (les homotopies étant réalisées par des applications G-équivariantes) de Y vers Z. Une construction explicite est donnée en considérant la sphère de représentation $S^{n,p}$ de $(n-p)\mathbf{1}+p\xi$, laquelle possède un point à l'infini ∞ qui est un point fixe de l'action de G; le quotient $\mathbb{Z}_0(S^{p,p})$ du groupe abélien libre $\mathbb{Z}(S^{n,p})$ sur $S^{n,p}$, muni d'une topologie convenable, par $\mathbb{Z}(\{\infty\})$ est alors un modèle de $K(\underline{\mathbb{Z}},(n,p))$, voir [San03].

Proposition 1.4 ([SL11, Proposition A.1]). Soit (n, p) un couple d'entiers tel que $0 \le n \le p$. Alors, pour tout G-espace X, $H^{n,p}_{Br}(X,\underline{\mathbb{Z}}) = H^{n,p}_{Bor}(X,\underline{\mathbb{Z}})$.

Démonstration. Le morphisme $\mathbb{Z}_0(S^{p,p}) \to F(EG, \mathbb{Z}_0(S^{p,p}))$ est une équivalence d'homotopie équivariante 6 — le membre de droite désigne l'espace des applications équivariantes de EG vers $\mathbb{Z}_0(S^{p,p})$. Vu la définition de $H^{*,*}_{Bor}$, cela implique le résultat voulu pour n=p. Le cas $n\leqslant p$ s'en déduit par suspension.

En outre, pour tout G-espace X,

$$H^{n,p}_{Bor}(X,\underline{\mathbb{Z}}) = H^n_{Bor}(X,\mathbb{Z}(p)),$$

où $\mathbb{Z}(p) = (2i\pi)^p \mathbb{Z}$, voir l'introduction de [SL11].

^{4.} Nous restons volontairement vague sur la définition à donner à cette expression. Nous n'aurons en réalité besoin que du cas concret de la cohomologie de Bredon.

^{5.} Ici, $\underline{\mathbb{Z}}$ est un système de coefficients au sens de Bredon, c'est-à-dire un foncteur contravariant de la catégorie des orbites de \mathfrak{G} vers la catégorie des groupes abéliens : c'est le système de coefficients constant de valeur \mathbb{Z} .

Lorsque $\mathfrak{G} = G$, $H_G^*(-,\underline{\mathbb{Z}})$ est intimement liée à la cohomologie de Bredon $H_{Br}^{*,*}(-,\underline{\mathbb{Z}})$ étudiée qui en est une extension RO(G)-graduée au sens où $H_{Br}^{n,0}(X,\underline{\mathbb{Z}}) = H_G^n(X,\underline{\mathbb{Z}})$ où $\underline{\mathbb{Z}}$ désigne le préfaisceau de Mackey représenté par \mathbb{Z} dans le premier groupe de cohomologie, et le système de coefficients constant de valeur \mathbb{Z} dans le second.

^{6.} L'article de dos Santos-Lima-Filho ne donne pas davantage de détails.

1.2 Descriptions en termes de fibrés en droites

Rappelons que la colimite \mathbb{C}^{∞} des espaces \mathbb{C}^n , où \mathbb{C}^n est plongé dans \mathbb{C}^{n+1} par $x \mapsto (x,0)$, muni de la topologie de la colimite est un \mathbb{C} -espace vectoriel topologique dont l'espace des droites, quotient de \mathbb{C}^{∞} par l'action de \mathbb{C}^* par homothétie, est noté $\mathbb{P}^{\infty}(\mathbb{C})$: ce dernier s'identifie à la colimite des espaces $\mathbb{P}^n(\mathbb{C})$ (avec morphismes de transitions donnés par $x \mapsto [x:0]$ avec un abus de notations évident). Concrètement, un élément de $\mathbb{P}^{\infty}(\mathbb{C})$ est une suite $[x_0:x_1:\cdots]$ presque nulle dont au moins un terme est non nul où deux suites $[x_0:x_1:\cdots]$ et $[x'_0:x'_1:\cdots]$ sont identifiées lorsqu'il existe $\lambda \in \mathbb{C}^*$ tel que $x'_i = \lambda x_i$ pour tout i.

L'espace $\mathbb{P}^{\infty}(\mathbb{C})$ est naturellement muni d'une fibré en droites $p: \mathfrak{O}(-1) \to \mathbb{P}^{\infty}(\mathbb{C})$ dit tautologique : l'espace total $\mathfrak{O}(-1)$ est le sous-ensemble de $\mathbb{P}^{\infty}(\mathbb{C}) \times \mathbb{C}^{\infty}$ donné par $\mathfrak{O}(-1) = \{(\ell, v) \in \mathbb{P}^{\infty}(\mathbb{C}) \times \mathbb{C}^{\infty}, v \in \ell\}$ et l'application p est la restriction à L de la deuxième projection. Ainsi, la fibre au-dessus d'une droite ℓ de \mathbb{C}^{∞} est « la droite ℓ elle-même ».

Si X est un espace topologique et si $f: X \to \mathbb{P}^{\infty}(\mathbb{C})$ est une application continue, alors $f^*\mathcal{O}(-1) = \{(x, (\ell, v)) \in X \times \mathcal{O}(-1), f(x) = \ell\}$ muni de la première projection est un fibré en droites sur X. Le résultat suivant est bien connu (mais non trivial!).

Théorème 1.5. Soit X un espace paracompact. L'association $f \mapsto f^*\mathcal{O}(-1)$ de l'ensemble des applications continues de X vers $\mathbb{P}^{\infty}(\mathbb{C})$ vers l'ensemble $\mathrm{Pic}(X)$ des classes d'isomorphismes de fibrés en droites descend en une bijection $[X, \mathbb{P}^{\infty}(\mathbb{C})] \cong \mathrm{Pic}(X)$.

On peut résumer cet énoncé en disant que $\mathbb{P}^{\infty}(\mathbb{C})$ est l'espace classifiant du groupe $GL_1(\mathbb{C})$, c'està-dire que $\mathbb{P}^{\infty}(\mathbb{C})$ (avec son fibré en droites tautologique) classifie les fibrés en droites (sur les espaces raisonnables).

L'espace $\mathbb{P}^1(\mathbb{C})$ muni de l'involution $\sigma: [x_0:x_1] \mapsto [x_0:-x_1]$ s'identifie en tant que G-espace à la sphère de représentation $S^{2,2}$ par l'identification standard de $\mathbb{C} \sqcup \{\infty\}$ à $\mathbb{P}^1(\mathbb{C})$ envoyant z sur [z:1] et ∞ sur [1:0]. L'involution σ s'étend en une involution de $\mathbb{P}^\infty(\mathbb{C})$, envoyant $[x_0:x_1:x_2:x_3:\cdots]$ sur $[x_0:-x_1:x_2:-x_3:\cdots]$ et toujours notée σ . Le couple $(\mathbb{P}^\infty(\mathbb{C}),\sigma)$ est un $K(\overline{\mathbb{Z}},(2,2))$ en vertu de l'identification de $\mathbb{P}^\infty(\mathbb{C})$ au symétrisé infini de $\mathbb{P}^1(\mathbb{C})$, c'est-à-dire à la colimite de $\mathbb{P}^1(\mathbb{C})^n/\mathfrak{S}_n$, le groupe \mathfrak{S}_n agit sur $\mathbb{P}^1(\mathbb{C})^n$ par permutation des coordonnées, voir ??. En outre, le morphisme structural du tiré en arrière fournit une application $\tau:\sigma^*\mathfrak{O}(-1)\to \mathfrak{O}(-1)$ qui recouvre σ (c'est la commutativité du diagramme de produit fibré) et vérifie $\tau\circ\sigma^*\tau=\mathrm{Id}$.

Soit (Y, σ) un G-espace. Nous notons $P_1(Y)$ l'ensemble des paires (L, τ) où :

- la lettre L désigne un fibré en droites complexe lisse sur Y;
- la lettre τ désigne un morphisme de fibrés de σ^*L vers L recouvrant σ , c'est-à-dire que le diagramme suivant :

$$\begin{array}{ccc}
\sigma^* \mathcal{L} & \xrightarrow{\tau} & L \\
\downarrow & & \downarrow \\
Y & \xrightarrow{\sigma} & Y
\end{array}$$

est commutatif;

– on a $\tau \circ \sigma^* \tau = \mathrm{Id}$.

Nous notons \sim_1 la relation sur $P_1(Y)$ définie comme suit : $(L, \tau) \sim_1 (L', \tau')$ lorsqu'il existe un isomorphisme $\phi : L \to L'$ de fibrés vectoriels tel que $\phi \circ \tau = \tau' \circ \sigma^* \phi$. Le tiré en arrière fait de $Prm_1(Y)$ un foncteur contravariant sur la catégorie des G-espaces.

Lemme 1.6. Le produit tensoriel de fibrés en droites descend en une loi de groupe sur $\mathcal{L}_1(Y) = P_1(Y)/\sim_1$. En outre, le groupe $(\mathcal{L}_1(Y), \otimes)$ est isomorphe à $H^{2,2}_{Br}(Y, \underline{\mathbb{Z}})$.

Démonstration. Il suffit de remarquer que $((\mathbb{P}^{\infty}(\mathbb{C}), \sigma), (\mathfrak{O}(-1), \tau))$ représente \mathcal{L}_1 ⁷, et que $(\mathbb{P}\infty(\mathbb{C}), \sigma)$ est un $K(\underline{\mathbb{Z}}, (2, 2))$.

Nous allons introduire un autre outil pour comprendre le groupe $H^{2,2}_{Br}(X,\underline{\mathbb{Z}})$. Commençons par une notation. Si V est un \mathbb{C} -espace vectoriel, \overline{V} désigne le \mathbb{C} -espace vectoriel dont le groupe abélien sous-jacent est le même que celui de V, et dont l'action de \mathbb{C} est donnée par $(\lambda, v) \mapsto \overline{\lambda}v$ — c'est

^{7.} L'auteur n'est pas parvenu à vérifier cette affirmation.

donc la même construction que celle de la théorie de Hodge. L'association $V \mapsto \overline{V}$ s'étend en un endofoncteur de la catégorie des \mathbb{C} -espaces vectoriels de façon évidente. La donnée d'une application \mathbb{C} -antilinéaire f de V vers W (cela signifie que $f(\lambda v) = \overline{\lambda} f(v)$) est équivalente à la donnée d'une application \mathbb{C} -linéaire de \overline{V} vers W ou de V vers \overline{W} , par l'identité en termes ensemblistes. En outre, la donnée d'un produit hermitien sur V consiste la donnée d'un morphisme $h: V \otimes_{\mathbb{C}} \overline{V} \to \mathbb{C}$ de \mathbb{C} -espace vectoriel. La construction $V \mapsto \overline{V}$ s'étend de manière évidente aux fibrés vectoriels : si $p: E \to X$ est un fibré vectoriel complexe, \overline{E} est le fibré de projection p tel que pour tout $x \in X$, $\overline{E}_x = \overline{E_x}$ — seule la structure de \mathbb{C} -espace vectoriel sur les fibres change (en conjuguant les trivialisations locales, on voit immédiatment que $\overline{E} \to X$ est un fibré vectoriel).

Rappelons qu'un fibré vectoriel Réel sur un G-espace Y consiste en la donnée d'un couple (E, τ) où E est un fibré vectoriel complexe sur Y et $\tau : \overline{\sigma^*E} \to E$ est un σ -isomorphisme de fibrés vectoriels 8 tel que $\tau \circ \overline{\sigma^*\tau} = \mathrm{Id}$. Nous notons $P_2(Y)$ l'ensemble des couples (L, q) où :

- la lettre L désigne un fibré en droites complexe lisse sur Y;
- la lettre q désigne un isomorphisme $q: L \otimes \overline{\sigma^*L} \to \mathbf{1}_Y$ de fibrés vectoriels Réels sur Y, où \mathbb{F}_Y désigne la structure évidente de fibré vectoriel Réel sur le fibré en droites complexe trivial sur Y, et où $L \otimes \overline{\sigma^*L}$ est muni de la structure tautologique de fibré vectoriel Réel sur Y donnée par l'échange des facteurs du produit tensoriel.

Nous introduisons la relation \sim_2 définie comme suit : $(L,q) \sim_2 (L',q')$ si, et seulement si, il existe un isomorphisme $\phi: L' \to L'$ tel que $q' \circ (\phi \otimes \overline{\sigma^* \phi}) = q$. La relation \sim_2 est une relation d'équivalence sur $P_2(Y)$. La classe de (L,q) est notée $\langle L,q \rangle$.

Lemme 1.7. Le produit tensoriel descend en une structure de groupe sur l'ensemble $\mathcal{L}_2(Y) = P_2(Y)$.

La proposition suivante fournit plusieurs descriptions de $H^{2,2}_{Br}(Y,(\mathbb{Z}))$.

Proposition 1.8. On dispose d'isomorphismes naturels

$$H^{2,2}_{Br}(Y,\underline{\mathbb{Z}}) \cong H^{2,2}_{Bor}(Y,\underline{\mathbb{Z}}) \cong \mathcal{L}_1(Y) \cong \mathcal{L}_2(Y)$$

de groupes abéliens pour tout G-variété Y.

Remarque. Dans ??, les auteurs ajoutent que $\mathcal{L}_2(Y)$ est tautologiquement isomorphe à $\mathbb{H}^1(Y_{\text{\'eq}}, G^0 \xrightarrow{a} G^1)$ (en fait, il vaut mieux employer, comme dos Santos et Lima-Filho le font dans l'appendice, la cohomologie de Čech) où G^0 (respectivement G^1) est le faisceau sur la catégorie des G-variétés donnés par $G^0(Y) = \{f : Y \to \mathbb{C}^*, f \text{ lisse}\}$ et $G^1(Y) = \{f : Y \to \mathbb{C}^*, f \text{ lisse}\}$ et équivariante $\{f \in \mathcal{F}\}$ (rappelons que \mathbb{C}^* est muni de la G-action par conjugaison complexe), et le morphisme f est donné par f (où f est f (où f est f (où f est la preuve est analogue à l'identification de l'ensemble des classes d'isomorphisme de fibrés en droites avec f (dans différents contextes) puisque, si f est une fonction de transition pour un fibré f est la fonction de transition pour f est la fonction de transition pour f est la fonction de des difficultés est que, f est par possible de trivialiser un fibré en droites complexe lisse f par des ouverts f est dans f est possible de le faire si f est de surcroît muni d'une application f telle que f est dans f est dans f est que f mais l'auteur n'a pas pu l'établir.

Cette interprétation de $H^{2,2}_{Br}$ n'apparaît que dans l'appendice B, dont l'organisation est analogue à celle de la section 5, où les auteurs donnent, en termes de cocyles, une description explicite de l'application $H^{2,2}_{Br}(Y,\underline{\mathbb{Z}}) \to \mathbb{H}^1(Y_{\text{éq}},G^0 \to G^1)$, en tant que prélude à la démonstration de la suite exacte où s'insère le groupe $H^2_{D/\mathbb{R}}(X,\mathbb{Z})$.

Démonstration. Il reste désormais seulement à démontrer que $\mathcal{L}_1(Y)$ et $\mathcal{L}_2(Y)$ sont isomorphes.

– Soit (L, τ) un élément de $P_1(Y)$. Soit $h: L \otimes \overline{L} \to \mathbf{1}_Y$ une métrique hermitienne. On pose

$$q_{\tau}^h = h \circ 1 \otimes \overline{\tau} : \mathcal{L} \otimes \overline{\sigma^* \mathcal{L}} \xrightarrow{1 \otimes \overline{\tau}} \mathcal{L} \otimes \overline{\mathcal{L}} \to \mathbf{1}_{\mathcal{Y}}.$$

C'est un isomorphisme de fibrés en droites Réels d'où un élément (L, q_{τ}^h) de $P_2(Y)$.

^{8.} Soit V un \mathbb{C} -espace vectoriel. On note \overline{V} le \mathbb{C} -espace vectoriel ayant le même groupe abélien sous-jacent que V mais dont la \mathbb{C} -action $*: \mathbb{C} \times V \to V$ est donnée par $\lambda * v = \overline{\lambda} v$.

Si $\psi : \mathcal{L}' \to \mathcal{L}$ est un isomorphisme de fibrés en droites tel que $q \circ \phi \otimes \overline{\sigma^* \phi} = q$, alors $(\mathcal{L}', q_{\tau}^{\psi^* h}) \sim_2 (\mathcal{L}, q_{\tau}^h)$. On en déduit ⁹ que $(\mathcal{L}, \tau) \mapsto \langle \mathcal{L}, q_{\tau}^h \rangle$ induit une application $\mathcal{L}_1(\mathcal{Y}) \to \mathcal{L}_2(\mathcal{Y})$.

– Pour la réciproque, on part d'un élément (L, q) de $P_2(Y)$, on fixe une métrique hermitienne h sur L et on construit par la dualité induite par h un morphisme $\tau : \sigma^*L \to L$ tel que $q = h \circ 1 \otimes \overline{\tau}$. Cela définit un morphisme $\mathcal{L}_2(Y) \to \mathcal{L}_1(Y)$, inverse de celui construit ci-dessus. ¹⁰

Soit Y une G-variété. Notons S l'ensemble $\pi_0(Y^G)$ des composantes connexes par arcs de Y^G , le lieu réel de Y. On identifie $H^0(Y^G, \mathbb{Z}^{\times})$ à $(\mathbb{Z}^{\times})^S$. On observe que si Y^G est vu comme une G-variété par l'action triviale de G,

$$H^{2,2}_{Bor}(Y^G,\underline{\mathbb{Z}})=H^n_{Bor}(Y^G,\mathbb{Z}(2))=H^n(Y^G\times_G EG,\mathbb{Z}(2))=H^n(Y^G\times BG,\mathbb{Z}(2)).$$

Comme $G = Gal(\mathbb{C}/\mathbb{R})$, $BG = \mathbb{P}^{\infty}(\mathbb{R})$ donc $H^0(BG, \mathbb{Z}(2)) = \mathbb{Z}(2)$ et $H^2(BG, \mathbb{Z}(2)) = \mathbb{Z}^{\times}$. Il résulte alors de la formule de Künneth que

$$H^{2,2}_{Bor}(Y^G,\underline{\mathbb{Z}}) = (Z^\times)^S \oplus H^2(Y^G,\mathbb{Z}(2)).$$

On construit alors un morphisme de $H^{2,2}_{Br}(Y,\underline{\mathbb{Z}})$ vers $(Z^{\times})^S$ en considérant la composition suivante :

$$\aleph: H^{2,2}_{Br}(Y,\underline{\mathbb{Z}}) = H^{2,2}_{Bor}(Y,\underline{\mathbb{Z}}) \to H^{2,2}_{Bor}(Y^G,\underline{\mathbb{Z}}) \to (\mathbb{Z}^\times)^S,$$

où le morphisme $H^{2,2}_{Bor}(Y,\underline{\mathbb{Z}}) \to H^{2,2}_{Bor}(Y^G,\underline{\mathbb{Z}})$ est donné par fonctorialité équivariante (l'inclusion de Y^G dans Y est équivariante), le morphisme $H^{2,2}_{Bor}(Y^G,\underline{\mathbb{Z}}) \to (\mathbb{Z}^\times)^S$ est la deuxième projection. Le morphisme \aleph a l'interprétation géométrique suivante. Si (L,q) est un élément de $P_2(Y)$, la

Le morphisme \aleph a l'interprétation géométrique suivante. Si (L,q) est un élément de $P_2(Y)$, la forme q se restreint en une forme hermitienne non dégénérée sur Y^G qui possède une signature $\aleph_{\langle L,q\rangle}$: c'est une fonction localement constante de Y^G vers $\{\pm 1\}$, c'est-à-dire un élément de $(Z^\times)^S$, et il est facile de vérifier que \aleph et $\langle L,q\rangle \mapsto \aleph_{\langle L,q\rangle}$ coïncide modulo l'isomorphisme $H^{2,2}_{Br}(Y,\underline{\mathbb{Z}}) \cong \mathcal{L}_2(Y)$. ¹¹ Cette observation justifie la terminologie employée dans la définition suivante.

Définition 1.9. On appelle $\aleph: H^{2,2}_{Br}(Y,\underline{\mathbb{Z}}) \to (\mathbb{Z}^{\times})^S$ la signature équivariante de Y. L'image $\aleph_{tor}(Y)$ du sous-groupe de $H^{2,2}_{Bor}(Y,\underline{\mathbb{Z}})$ des éléments de torsion est le groupe de signature équivariant de Y. Lorsque Y est de la forme $X(\mathbb{C})$ muni de la conjugaison, de sorte que $S = \pi_0(X(\mathbb{R}))$, on note plus simplement $\aleph_{tor}(X)$ pour $\aleph(Y)$.

Exemple 1.10. Supposons que X soit une courbe algébrique réelle projective. Il suit alors de la suite exacte longue de la paire $(EG \times_G X(\mathbb{C}), BG \times X(\mathbb{C}))$ que le morphisme \aleph est un isomorphisme. ¹² Ainsi, comme le groupe de Brauer Br(X) s'identifie à $(\mathbb{Z}^{\times})^S$ d'après un résultat de Witt (cf. [Wit34]), on dispose d'identifications naturelles

$$H^{2,2}_{Br}(X(\mathbb{C}),\underline{\mathbb{Z}}) = (\mathbb{Z}^{\times})^{S} = B(X)$$

par le moyen de \aleph .

2. Le groupe
$$H^2_{\mathbb{D}/\mathbb{R}}(X(\mathbb{C}),\mathbb{Z}(2))$$

Rappelons que la définition de la cohomologie de Deligne en tant que cohomologie d'un (translaté d'un) cône fournit un diagramme commutatif de la forme suivante :

Samuel Lerbet 7 2016–2022

^{9.} À supposer que la classe de (L, q_{τ}^h) ne dépende pas de h, ce que l'auteur n'a pas pu vérifier.

^{10.} Pour le vérifier, il faudrait établir que τ ainsi construit est continu la classe de (L, τ) pour \sim_1 . L'auteur est confiant de la véracité de la deuxième assertion sous l'hypothèse que la première est vraie, bien qu'il ne l'ait pas vérifié; il n'a pas su prouver la première.

^{11.} Du moins, c'est ce qu'affirme [SL11], nous ne sommes pas parvenu à le vérifier.

^{12.} Nous ne somme pas parvenu à écrire les détails. Le conoyau de \aleph est contrôlé par $H^3(EG \times_G X(\mathbb{C}), BG \times X(\mathbb{C}))$, ce qui explique peut-être la surjectivité de \aleph car X est une courbe, mais nous n'avons pas d'idée pour l'injectivité.

$$H^{n,p}_{B}(X(\mathbb{C}),\underline{\mathbb{Z}}) \xrightarrow{\varphi} H^{n}_{sing}(X(\mathbb{C}),\mathbb{Z}(p))G$$

$$\uparrow \qquad \qquad \downarrow j$$

$$H^{n,p}_{\mathbb{D}/\mathbb{R}}(X,\mathbb{Z}(p)) \xrightarrow{\nu} H^{n,p}_{B}(X(\mathbb{C}),\underline{\mathbb{Z}}) \oplus F^{p}H^{n}_{sing}(X(\mathbb{C}),\mathbb{C})^{G} \xrightarrow{H^{n}_{sing}(X(\mathbb{C}),\mathbb{C})^{G}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

où $\rho: \mathrm{H}^n_{\mathbb{D}/\mathbb{R}}(\mathrm{X},\mathbb{Z}(p)) \to \mathrm{H}_B r^{n,p}(\mathrm{X}(\mathbb{C}),\underline{\mathbb{Z}})$ est l'application de classe de la cohomologie de Deligne vers la cohomologie de Bredon, dont la ligne du milieu est exacte. La filtration de Hodge $\mathrm{F}^p\mathrm{H}^n_{\mathrm{sing}}(\mathrm{X}(\mathbb{C}),\mathbb{C})$ induit un sous-groupe

$$\mathrm{F}^{p}\mathrm{H}^{n,p}_{\mathrm{Br}}(\mathrm{X}(\mathbb{C}),\underline{\mathbb{Z}}) = \varphi^{-1}j^{-1}\mathrm{F}^{p}\mathrm{H}^{n}_{\mathrm{sing}}(\mathrm{X}(\mathbb{C}),\mathbb{C})^{\mathrm{G}}.$$

Nous considérons le cas n = p = 2.

Proposition 2.1. Pour toute variété algébrique réelle projective lisse X, on a

$$F^2H^{2,2}_{Br}(X(\mathbb{C}),\mathbb{Z}) = Im(\rho) = H^{2,2}_{Br}(X(\mathbb{C}),\underline{\mathbb{Z}})_{tor},$$

le dernier groupe dénotant le sous-groupe de torsion de $H^{2,2}_{Br}(X(\mathbb{C}),\underline{\mathbb{Z}})$. En particulier, l'image du morphisme

$$\Psi: \mathrm{H}^n_{\mathfrak{D}/\mathbb{R}}(\mathrm{X},\underline{\mathbb{Z}}) \xrightarrow{\rho} \mathrm{H}_B r^{n,p}(\mathrm{X}(\mathbb{C}),\underline{\mathbb{Z}}) \xrightarrow{\aleph} \mathrm{H}^0(\mathrm{X}(\mathbb{R}),\mathbb{Z}^{\times})$$

est égale à $\aleph_{tor}(X)$.

 $D\acute{e}monstration$. L'égalité $F^2H^{2,2}_{Br}(X(\mathbb{C}),\mathbb{Z})=Im(\rho)$ provient de l'exactitude de la ligne du milieu du diagramme.

Pour la suivante, on constate qu'on peut décomposer $j \circ \varphi$ selon

car le dernier membre est un sous-groupe d'un C-espace vectoriel, qui n'a donc pas de torsion. Ici, l'injectivité de la flèche

$$H^{2,2}_{Br}(X(\mathbb{C}),\underline{\mathbb{Z}})\otimes \mathbb{Q} \hookrightarrow H^2_{sing}(X(\mathbb{C}),\mathbb{Z}(2))$$

provient de l'isomorphisme $H^{2,2}_{Br}(X(\mathbb{C}),\underline{\mathbb{Z}})=H^{2,2}_{Bor}(X(\mathbb{C}),\underline{\mathbb{Z}})$ et de faits bien connus de la cohomologie équivariante. ¹³ Mais

$$H^2_{\mathrm{sing}}(X(\mathbb{C}),\mathbb{Z}(2))\otimes \mathbb{Q}\cap F^2H^2(X(\mathbb{C}),\mathbb{C})=0.$$

En effet, les éléments de $H^2_{sing}(X(\mathbb{C}),\mathbb{Z}(2))$ qui appartiennent à $F^2H^2(X(\mathbb{C}),\mathbb{C})$ appartiennent aussi au conjugué $\overline{F^2H^2(X(\mathbb{C}),\mathbb{C})}$ donc sont de torsion et donnent ainsi 0 après tensorisation par \mathbb{Q} . On en conclut que

$$(j\circ\varphi)^{-1}\mathrm{F}^2\mathrm{H}^2(\mathrm{X}(\mathbb{C}),\mathbb{C})^{\mathrm{G}}=\mathrm{H}^{2,2}_{\mathrm{Br}}(\mathrm{X}(\mathbb{C}),\underline{\mathbb{Z}})_{\mathrm{tor}}.$$

Cela achève la démonstration.

Nous allons désormais donner une description géométrique du noyau de la flèche

$$\Psi: H^2_{\mathcal{D}/\mathbb{R}}(X,2) \to \aleph_{tor}(X).$$

Nous introduisons l'ensemble des couples (L, ∇, q) où :

^{13.} L'article [SL11] ne donne pas davantage de détails.

- L est un fibré en droites holomorphes sur $X(\mathbb{C})$;
- − ∇ est une connexion holomorphe sur L, c'est-à-dire un morphisme ∇ : L → L \otimes Ω¹ de fibrés vectoriels tel que $\nabla(fs) = s \otimes \partial f + f \nabla s$ pour toute fonction holomorphe f et toute section s définies sur un ouvert de X;
- $-q: L \otimes \overline{\sigma^*L} \to \mathbf{1}_Y$ est un isomorphisme holomorphe de fibrés Réels.

Ces données sont assujetties aux conditions suivantes.

- La restriction de q à $L_{X(\mathbb{R})}$ est une métrique hermitienne définie positive.
- En tant que section du fibré $\mathbf{M} = (\mathbf{L} \otimes \overline{\sigma^* \mathbf{L}})^{\vee}$, q est parallèle à la connexion $\widetilde{\nabla}$ sur \mathbf{M} induite par $\nabla : \widetilde{\nabla} q = 0$.

Un morphisme $f:(L, \nabla, q) \to (L', \nabla', q')$ entre tels triplets est un morphisme $f:L \to L'$ de fibrés en droites tel que $q' \circ (f \otimes \overline{\sigma^*q}) = q$ et $\nabla' \circ f = (1 \otimes f) \circ \nabla$.

Définition 2.2. On note $PW^{\nabla}(X)$ l'ensemble des classes d'isomorphisme de triplets (L, ∇, q) comme ci-dessus. C'est un groupe pour la loi \odot donnée par

$$\langle L, \nabla, q \rangle \odot \langle L', \nabla', q' \rangle = \langle L \otimes L', \nabla \otimes 1 + 1 \otimes \nabla, q \cdot q' \rangle.$$

On appelle $PW^{\nabla}(X)$ le groupe de Picard-Witt différentiel de X.

Remarque. La formule $\nabla \otimes 1 + 1 \otimes \nabla$ définit le produit des connexions ∇ et ∇' : c'est une connexion sur le produit tensoriel des fibrés en droites sous-jacents à ∇ et ∇' .

Remarque. On peut de façon analogue au cas du groupe de cohomologie $H^{2,2}_{Br}(X(\mathbb{C}),\underline{\mathbb{Z}})$ donner une interprétation du groupe $PW^{\nabla}(X)$ en termes de cohomologie de $X(\mathbb{C})_{\acute{e}q}$ à valeurs dans un certain complexe \mathcal{P}^* de préfaisceaux sur la catégorie des variétés holomorphes réelles (c'est-à-dire munis d'une involution antiholomorphe). Si U est une variété holomorphe réelle, on pose

$$\mathcal{P}^{0}(\mathbf{U}) = \mathcal{O}^{*}_{\mathbb{C}}(\mathbf{U}) = \{ f : \mathbf{U} \to \mathbb{C}^{*} \text{ holomorphe} \}$$

et

$$\mathcal{P}^1(U) = \Omega^1_{\mathbb{C}}(U) \oplus \mathcal{O}^*_{\mathbb{R}_+}(U)$$

où $\Omega^1_{\mathbb{C}}(\mathbb{U})$ désigne le groupe des 1-formes holomorphes et $\mathcal{O}^*_{\mathbb{R}_+}(\mathbb{U})$, le sous-groupe de $\mathcal{O}^*_{\mathbb{C}}(\mathbb{U})$ formé par les fonctions $f:\mathbb{U}\to\mathbb{C}^*$ qui sont holomorphes Réelles, c'est-à-dire que $f=\overline{\sigma^*f}$, qui sont strictement positives sur le lieu réel \mathbb{U}^G ; en outre, on pose $D(g)=(\frac{dg}{g},g\cdot\overline{\sigma^*g})\in\mathcal{P}^1(\mathbb{U})$ pour tout $g\in\mathcal{P}^0(\mathbb{U})$. Enfin, on définit

$$\mathcal{P}^2(\mathbf{U}) = \Omega^1_{\mathbb{R}}(\mathbf{U}) = \{ \psi \in \Omega^1_{\mathbb{C}}(\mathbf{U}), \psi = \overline{\sigma^*\psi} \}$$

et on pose $D(\psi, f) = \psi + \overline{\sigma^* \psi} - \frac{df}{f}$. Alors, $D^2 = 0$ et $\mathrm{PW}^{\nabla}(\mathrm{X})$ s'identifie au groupe $\check{\mathbb{H}}^1(\mathrm{X}(\mathbb{C})_{\mathrm{\acute{e}q}}, \mathcal{P}^*)$.

Le théorème est alors le suivant.

Théorème 2.3. Si X est une variété algébrique réelle projective lisse, alors on a une suite exacte courte

$$0 \to \mathrm{PW}^\nabla(X) \to \mathrm{H}^2_{\mathbb{D}/\mathbb{R}}(X,\mathbb{Z}(2)) \xrightarrow{\Psi} \aleph_{\mathrm{tor}}(X) \to 0$$

de groupes abéliens.

Démonstration. La preuve consiste à construire explicitement des cocycles de Čech satisfaisant aux conditions requises pour l'exactitude, notamment à l'aide de l'argument d'obstruction locale ([SL11, Lemma B.4]) qui établit l'acyclicité du complexe de Bredon dans certain cas et de ses dérivés pour les complexes définissant la cohomologie de Deligne, voir [SL11, Appendix B].

Bibliographie

- [Bre67] Glen E. Bredon. « Equivariant cohomology theories ». In: Bulletin of the American Mathematical Society 73.2 (1967), p. 266–268 (cf. p. 4).
- [Oli20] Olivier Benoist et OLIVIER WITTENBERG. « On the integral Hodge conjecture for real varieties, I ». In: *Invent. math.* 222 (2020), p. 1–77 (cf. p. 4).
- [San03] Pedro F. dos Santos. « A note on the equivariant Dold–Thom theorem ». In : J. Pure Appl. Algebra 183 (2003), p. 973–1022 (cf. p. 4).
- [SL11] Pedro F. dos Santos et Paulo Lima-Filho. « Integral Deligne cohomology for real varieties ». In: *Math. Ann.* 350.4 (2011), p. 973–1022 (cf. p. 4, 7–9).
- [Wit34] Ernst WITT. « Zerlegung reeler algebraischer Funktionen in Quadrate, Schiefkörper über reellem Funktionenk" orper ». In: J. reine angew. Math. 171 (1934), p. 4–11 (cf. p. 7).