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GROUPE DE TRAVAIL 1

Conventions

For a field k, a variety over k will be a finite type separated k-scheme. A subvariety of a variety
is a closed subscheme. A curve over k is a variety over k pure of dimension 1, i.e., all irreducible
components are 1-dimensional. A surface over k is a variety over k pure of dimension 2.

In this talk all varieties will be over a finite field or an algebraically closed field.

Groupe de travail

This talk was given at Paris 13 for the groupe de travail: L’hypothése de Riemann d’après Deligne.
The first part of this groupe de travail is concerned with the article (commonly referred to as)
WeilI. It contains a proof of the Riemann hypothesis over finite fields.

One of the main tools in Deligne’s proof of the Riemann hypothesis is the generalized Lefschetz
trace formula for `-adic sheaves on varieties over finite fields. This talk aims at explaining the
statement and proof of this generalized Lefschetz trace formula.

Please let me know of any typo’s, mistakes, incomplete arguments, etc. My email is ariyanjavan
at gmail.com
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CHAPTER 1

The generalized trace formula

1. Introduction

Fix a finite field k and an algebraic closure k. Fix a prime number ` which is invertible in k, i.e.,
` 6= char k. Let X0 be a variety over k. We let X denote the base change X0×k k. The Frobenius
correspondance on X is denoted by Frob.

Theorem 1.1. Suppose that X0 is smooth and projective over k. For a finite field extension
k ⊂ K of degree n, it holds that

#X0(K) =
∑
i

(−1)i Tr((Frobn)∗, Hi
c(Xet,Q`).

Proof. This follows from the properties of a Weil cohomology (such as Poincaré duality,
Künneth formula, etc.) and the fact that the fixed point subscheme XFrobn

= X0(K). �

By the theorem below, the hypothesis of smooth and projective is not necessary. In fact, this
Theorem is a generalization of Theorem 1.1 for `-adic sheaves due to Grothendieck.

Let F0 be a Q`-sheaf on X0 and let F be the pullback to X.

Theorem 1.2. (Generalized Trace Formula) For every positive integer n, we have that∑
x∈XFrobn

Tr((Frobn)∗,Fx) =
∑
i

(−1)i Tr((Frobn)∗, Hi
c(X,F)).

Example 1.3. If dimX0 = 0, the statement is trivial. Write it out to see the link between traces
and fixed points explicitly.

As was explained in the second talk of this groupe de travail, the rationality of Grothendieck’s
zeta function follows from this theorem.

Corollary 1.4. Grothendieck’s zeta function L(X0,F0, t) is rational.

This talk will give the main ideas of the proof of this theorem. Due to lack of time, we will not
be able to present all the details of the proof.

Nevertheless, for the sake of completion and personal interest, we have added a chapter with
details of some Lemma’s on derived categories that we will use in the proof. We have also added
a chapter giving some applications and examples of the trace formula.

2. Perfect complexes

Let Λ be a left noetherian (possibly noncommutative!) ring. Let K(Λ) be the homotopy category
of left Λ-modules and D(Λ) the derived category.

Definition 1.5. The full subcategory of K(Λ) whose objects are bounded complexes of finite type
projective left Λ-modules is denoted by Kparf(Λ). The functor Kparf(Λ) −→ D(Λ) is fully faithful.
Its essential image is denoted by Dparf(Λ). An object of Dparf(Λ) is called a perfect complex.

We give two examples.
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4 1. THE GENERALIZED TRACE FORMULA

Example 1.6. Let A be a commutative noetherian ring. For elements x1, . . . , xn in A and E
the free A-module of rank n with basis (e1, . . . , en), we define the Koszul complex KA(x1, . . . , xn)
associated to the sequence (x1, . . . , xn) to be

0 // ΛnE
d // Λn−1E

d // . . . d // Λ1E = E
d // Λ0E = A // 0 .

Here the boundary map d : ΛpE −→ Λp−1E is given by

d(ei1 ∧ . . . ∧ eip) =

p∑
j=1

(−1)j−1xijei1 ∧ . . . ∧ êij ∧ . . . ∧ eip .

The reader may verify that d2 = 0. Note that for any permutation σ of the set {1, . . . , n}, the
Koszul complex KA(x1, . . . , xn) is isomorphic to the Koszul complex KA(xσ(1), . . . , xσ(n)). An
element x ∈ A is called regular if the multiplication by x is injective. A sequence (x1, . . . , xn) of
elements x1, . . . , xn ∈ A is said to be a regular sequence if x1 is regular and the image of xi in
A/(x1A+ . . .+ xi−1A) is regular for all i = 2, . . . , n. Let (x1, . . . , xn) be a sequence in A and let
I be the ideal generated by it. Assume I 6= A. If (x1, . . . , xn) is regular, the augmented Koszul
complex

0 // ΛnE
d // Λn−1E

d // . . . d // E
d // A // A/I // 0

is exact. Therefore, the A-module A/I (viewed as a complex in degree 0) is a perfect complex.

Example 1.7. Let A be a noetherian local regular ring with unique maximal ideal m. Then A/m
is a perfect complex of A-modules by the above example. (Any system of parameters of A forms
a regular sequence.)

Example 1.8. Let k be a field. Suppose that A = k[x, y]/(xy) and m = (x, y)A. Let k = A/m be
the corresponding residue field. Consider the infinite resolution of free A-modules

. . . g // A2 h // A2
g // A2 h // A2

g // A2
f // A // k // 0 .

Here
f : (s, t) 7→ sx+ ty, g : (s, t) 7→ (sy, tx) and h : (s, t) 7→ (sx, ty).

Note that

TorAi (k, k) =

{
k if i = 0
k2 if i > 0

.

To prove this, note that after tensoring the above resolution with k the maps become zero. This
shows that k does not have a finite projective resolution of A-modules. Else the TorAi (k,−)
functors would be identically zero for i� 0. Therefore, the A-module k is not a perfect complex
of A-modules.

Remark 1.9. Why perfect complexes? The answer lies in the following facts. Firstly, as we
will show in the next section, we can define the trace of an endomorphism of a perfect complex.
Furthermore, the compactly supported Euler characteristic of a constructible Z/`n-sheaf on a
variety (over a finite field or algebraically closed field) is a perfect complex of Z/`nZ-modules. We
will prove these facts in the following sections.

3. Traces and perfect complexes

Let Λ be a left noetherian ring. (We will only be concerned with Z/`nZ[G], where G is a finite
group.)

Definition 1.10. Let H be the subgroup of Λ+ generated by the elements ab− ba. We define the
additive group Λ# := Λ+/H.

Example 1.11. For Λ = Z/`nZ[G], we have that

Λ# =
⊕

conjugacy classes of G

Z/`nZ.
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Remark 1.12. We all know how to define the trace of an endomorphism f : Λr −→ Λr. To force
the “usual” equality Tr(fg) = Tr(gf), we will consider the image of the usual trace in Λ#. We
will now be more precise.

Free modules: Let M ∼= Λr and f : M −→ M an endomorphism. We define Tr(f) =
Tr(f,M) as the image of

∑
fii in Λ#. Here (fij)

r
i,j=1 is the matrix associated to f . For

Λr
f // Λs

g // Λr ,

one easily checks that Tr(fg) = Tr(gf).
Projective modules: Let P be a projective (finite type) left Λ-module. One can choose

an isomorphism α : P ⊕Q −→ Λr. Let f ′ = α ◦ (f ⊕ 0) ◦ α−1, i.e., the composition

Λr
α−1

// P ⊕Q f⊕0 // P ⊕Q α // Λr .

We define Tr(f, P ) = Tr(f) to be Tr(f ′). This is well-defined, i.e., independent of the
choices made.

Z/2-graded projective modules: A Z/2-grading on a left Λ-module E is a decompo-
sition E = E− ⊕ E+ into left Λ-modules. A decomposition A = A+ ⊕ A− of a Λ-
algebra A into left Λ-modules is said to be a Z/2-grading if A+A+ ⊂ A+, A−A− ⊂ A+,
A+A− ⊂ A− and A−A+ ⊂ A−.

Example 1.13. Let E be a free Λ-module. Let Λ∗E denote the exterior algebra.
We have an obvious Z/2-grading of Λ∗E which we denote by

Λ∗E = ΛevenE ⊕ ΛoddE.

For a projective finite type Z/2-graded modulo P = P+ ⊕ P− and f : P −→ P , we
define

Tr(f) = Tr(f, P ) := Tr(f00)− Tr(f11).

Equivalently, let τ in End(P ) be ±1 on P±. Then Tr(f) is just the trace of τf (forgetting
the Z/2-grading).

Let us explain why we do this. A pure element of a Z/2-graded algebra A = A+⊕A−
is an element of either A+ or A−. The degree of a pure element a ∈ A, denoted by deg a,
is defined as

deg a =

{
0 a ∈ A+ (we call these even elements)
1 a ∈ A− (we call these odd elements)

For pure elements a and b of A, we define the supercommutator of a and b, (also) denoted
by [a, b], as

[a, b] = ab− (−1)deg a deg bba.

Given a Z/2-graded Λ-module E, we can define a natural Z/2-grading on the Λ-algebra
End(E) as follows. Let τ in End(E) be ±1 on E±. Let End+(E) = {A ∈ End(E) | Aτ =
τA} and End−(E) = {A ∈ End(E) | Aτ = −τA}. For A in End(E), we define the
supertrace1 of A by

TrS(A) = Tr(τA).

Now, just as the trace vanishes on commutators, the supertrace vanishes on supercom-
mutators:

Proposition 1.14. The supertrace TrS vanishes on the supercommutator.

Proof. By the identity TrS(f) = Tr(f00)−Tr(f11), it suffices to treat the following
three cases.
(1) Let f and g be even. Then the supercommutator of f and g is just the commutator

of f and g. Furthermore, the action of τ is trivial in this case and therefore the
equality follows from the properties of the usual trace.

1This terminology comes from so-called supersymmetric quantum field theories.
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(2) Let f be even and g be odd (or vice versa). The supercommutator of A and B is an
odd element of End(E). Since odd elements have only off-diagonal entries it follows
that the supercommutator TrS([f, g]) = 0.

(3) Let f and g be odd. Note that this implies that f and g anticommute with τ . The
usual commutator

[τf, g]usual = τfg − gτf = τfg + τgf = τ [g, f ]super.

Now,

TrS([f, g]super) = Tr(τ [f, g]super) = Tr([τf, g]usual) = 0. �

We will only use this Proposition for morphisms of degree ±1. The supertrace is just the
anticommutator in this case.

Bounded complexes of projective modules: To a bounded complex

P• = . . . // Pn
fn // Pn+1

fn+1 // . . .

of projective (finite type) left Λ-modules, we associate the Z/2-graded Λ-module P :=
P even ⊕ P odd. We define Tr(f, P•) to be the (super)trace of the morphism f : P −→ P .

Perfect complexes: We have that for any object of K in Kparf(Λ) and endomorphism
f : K −→ K in K(Λ), the trace Tr(f,K) = Tr(f) is well-defined. To prove this, we
note that Tr(dH + Hd) = 0, i.e., the supertrace vanishes on the supercommutator.
Consequently, for any perfect complex K and endomorphism f : K −→ K in D(Λ), we
have that Tr(f,K) = Tr(f) is well-defined.

4. Constructible finite Tor dimension complexes

In this section we define the generalized notion of a perfect complex on a noetherian scheme.

Let X be a noetherian scheme and let Λ be a (left and right) noetherian ring. (A flat sheaf of
Λ-modules is a sheaf whose stalks are flat Λ-modules.)

Definition 1.15. We define Db
ctf (X,Λ) to be the full subcategory of D−(X,Λ) whose objects are

isomorphic to bounded complexes of flat constructible sheaves of Λ-modules. Here D(X,Λ) is

D(category of sheaves of left Λ-modules on X).

Example 1.16. For k a separably closed field, we have thatDparf(Λ) is isomorphic toDb
ctf (Spec k,Λ).

(This is trivial.) More generally, for a field k, we have thatDparf(Λ[G]) is isomorphicDb
ctf (Spec k,Λ),

where G = Gal (ks/k) is the absolute Galois group of k. (This might be wrong.)

Lemma 1.17. Let K be an object of D−(X,Λ). Then K is an object of Db
ctf (X,Λ) if and only if

Hi(K) is constructible for all i and K is of finite Tor dimension. �

Corollary 1.18. An object K of D−(Λ) is a perfect complex if and only if Hi(K) is of finite
type and K is of finite Tor dimension. �

Theorem 1.19. Let f : X −→ Y be a finite type separated morphism of noetherian schemes. Let
K be an object of Db

ctf (X,Λ). Then Rf!K is an object of Db
ctf (Y,Λ).

Proof. We sketch the proof. We will use that Rf! commutes with the tensor product. (Insert
reference to Appendix.) That is, for any right Λ-module, the natural morphism

N ⊗L Rf!K −→ Rf!(N ⊗L K)

is an isomorphism. By the spectral sequence

Epq2 = Rpf!H
q(K) =⇒ Hp+qRf!K
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and the finiteness theorem for Rf!, we have that Rf!K is an object of Db(X,Λ) and has con-
structible cohomology. By Lemma 1.17, it suffices to show that Rf!K is of finite Tor dimension.
By the “commutativity” mentioned above, we have that

Hi(N ⊗L Rf!K) = Hi(Rf!(N ⊗L K)).

Now, consider the spectral sequence

Epq2 = Rpf!H
q(N ⊗L K) =⇒ Hp+qRf!(N ⊗L K).

This is the above spectral sequence for N ⊗L K. By Lemma 1.17, we have that H1(N ⊗L K)
vanishes universally for q small enough. Th e result now follows. �

Remark 1.20. We will use this theorem only when Y = Spec k. In this case, we use the notation
as given in the definition below.

Definition 1.21. Let k be an algebraically closed field and let X be a variety k. Write f : X −→
Spec k for the structure morphism. For any object K of Db

ctf (X,Λ), where Λ is a left noetherian

ring, we definef2 RΓc(K) := Rf!(K). By Theorem 1.19 and Example 1.16, it is a perfect complex.

5. Local Lefschetz number equals global Lefschetz number

The goal of this talk is to prove the generalized trace formula (Theorem 1.2). We will show that
Theorem 1.2 follows from the so-called Strong “Local is Global” Theorem.

Theorem 1.22. ( Strong “Local is Global”) Let X0 be a variety over Fq and let Λ be a
noetherian torsion ring which gets killed by some integer coprime with p. Let K0 be an object of
Db
ctf (X0,Λ). Then, for any n, it holds that∑

x∈XFrobn

Tr((Frobn)∗,Kx) = Tr((Frobn)∗, RΓc(X,K)).

Let us explain how the generalized Lefschetz formula (Theorem 1.2) follows from this Theorem.

Proof. (Theorem 1.22 implies Theorem 1.2) We only treat the case n = 1. The general
case is similar. Fix a prime number ` invertible in Fq.

Let X0 be a variety over Fq and let F0 be a Q`-sheaf on X0. We have that F0 = G0 ⊗Q`, where

G0 is a torsion free Z`-sheaf. We write G for the pullback of G0 to X = X0 ⊗Fq
Fq. Similarly,

we write F for the pull-back of F0 to X. Recall that G is a projective system of sheaves (Gn)n≥0

with Gn a constructible sheaf of Z/`nZ-modules such that the transition morphism Gn −→ Gn−1

factorises through an isomorphism

Gn ⊗Z/`n+1Z Z/`nZ −→ Gn−1.

Firstly, let us apply Theorem 1.22 to Gn viewed as a constructible finite Tor dimension3 complex
concentrated in degree 0. This gives us that

Tr(Frob∗, RΓc(X,Gn)) =
∑

x∈XFrob

Tr(Frob∗, (Gn)x) =
∑

x∈XFrob

Tr(Frob∗,Gx) mod `n+1

=
∑

x∈XFrob

Tr(Frob∗,Fx) mod `n+1.

The second equality follows from the isomorphism

Gn ⊗Z/`n+1Z Z/`nZ −→ Gn−1.

2In my opinion, one could call this the compactly supported Euler characteristic of K.
3I didn’t explain why this is true during the talk. Drew gave an argument. One takes a stratification for the

constructible sheaf G and considers the short exact sequence associated to the biggest stratum. Using this short
exact sequence, we may assume G is locally constant. A simple arguement shows that we may assume G to be

constant and then the statement follows from some commutative algebra (for Z/`n-modules)
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The last equality follows from the fact that the trace doesn’t change if we extend scalars to Q`.
(Right?)

Now, we take limits at both sides to see that

lim
←

Tr(Frob∗, RΓc(X,Gn)) = lim
←

∑
x∈XFrob

Tr(Frob∗,Fx) mod `n+1

=
∑

x∈XFrob

Tr(Frob∗,Fx).

Thus, to prove Theorem 1.2, it suffices to show that

lim
←

Tr(Frob∗, RΓc(X,Gn)) =
∑

(−1)i Tr(Frob∗, Hi
c(X,F)).

To this end, we take a small detour. We define

Kn = RΓc(X,Gn).

This is an object of Dparf(Z/`
n+1Z). We have to show that

lim
←

Tr(Frob∗,Kn) =
∑

(−1)i Tr(Frob∗, Hi
c(X,F)).

Here we used that the Frobenius induces endomorphisms

Frob∗ : Kn −→ Kn

in Dparf(Z/`
n+1). We may and do assume that Kn is realized as a bounded complex of free finite

type Z/`n+1-modules and that the above endomorphism is realized in the category of complexes.
We still let Frob∗ denote this endomorphism. Define

K = lim
←
Kn.

This is a complex of free Z`-modules and Kn
∼= K⊗Z`

Z/`n+1. We denote the Frobenius on K by
Frob∗ again. Furthermore, since every projective system of finite groups satisfies the Mittag-Leffler
condition, it holds that

Hi(K) = lim
←
Hi(Kn).

In particular, we have that Hi(K) is a finite type Z`-module. Note4 that

Hi
c(X,F) = (lim

←
Hi(Kn))⊗Z`

Q` = Hi(K)⊗Z`
Q`.

Therefore, we have to show that

lim
←

Tr(Frob∗,Kn) =
∑

(−1)i Tr(Frob∗, Hi(K)⊗Z`
Q`) =

∑
(−1)i Tr(Frob∗, Hi(K)).

This follows from an argument using the trace of a filtered perfect complex. (See appendix. It’s
not that complicated.) �

Remark 1.23. You might have noticed that in the above proof, we only used Theorem 1.22 with
Λ = Z/`nZ. It will be in the course of the proof of Theorem 1.22 that we will use representation
rings Z/`nZ[G] of finite groups (i.e., noncommutative rings).

4Recall that this is how one shows the finite dimensionality of the Q`-vector space Hi
c(X,G).
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6. Formal properties of the Local and Global trace

Our goal is to prove Theorem 1.2. In the previous section, we explained that it suffices to prove
Theorem 1.22. We will prove this Theorem for n = 1. (The general case is similar.) Thus, we will
prove the following

Theorem 1.24. ( Strong “Local is Global”) Let X0 be a variety over Fq and let Λ be a
noetherian torsion ring which gets killed by some integer coprime with p. Let K0 be an object of
Db
ctf (X0,Λ). Then we have that∑

x∈XFrob

Tr(Frob∗,Kx) = Tr(Frob∗, RΓc(X,K)).

In this section we show that Theorem 1.24 follows from

Theorem 1.25. (Weak “Local is Global” ) Let X0 be a variety over Fq and let Λ be a
noetherian torsion ring which gets killed by a power of a prime ` which is invertible in Fq. Suppose
that X0 is a smooth geometrically integral affine curve over k and that X0(k) = ∅. For K = F a
finite locally constant sheaf of Λ-modules on X whose stalks are finite projective Λ-modules, we
have that

0 = Tr(Frob∗, RΓc(X,K)).

Definition 1.26. For X0 a variety over Fq Λ a noetherian torsion ring which gets killed by some
integer coprime with p and K0 an object of Db

ctf (X0,Λ), we define the local Lefschetz number by

T ′(X0,K0) =
∑

x∈XFrob

Tr(Frob∗,Kx).

Moreover, we define the global Lefschetz number by

T ′′(X0,K0) = Tr(Frob∗, RΓc(X,K)).

Remark 1.27. The goal is to show that T ′(X0,K0) = T ′′(X0,K0). Hence the name “Local is
Global”. The following three Lemma’s will show that T ′ and T ′′ satisfy the same formal properties.

Lemma 1.28. (Excision) Let K0 be an object of Db
ctf (X0,Λ). Let U0 ⊂ X0 be an open subset

with complement Y0. Then

T ′(X0,K0) = T ′(U0,K0|U0
) + T ′(Y0,K0|Y0

)

and
T ′′(X0,K0) = T ′′(U0,K0|U0

) + T ′′(Y0,K0|Y0
).

Proof. This is straightforward to verify for T ′. For T ′′ one uses filtered derived complexes.
�

Lemma 1.29. Let K0 be an object of Db
ctf (X0,Λ). Suppose that K0 is a bounded complex of

constructible flat modules. Then

T ′(X0,K0) =
∑

(−1)iT ′(X0,K
i
0)

and
T ′′(X0,K0) =

∑
(−1)iT ′′(X0,K

i
0).

Proof. Again, this is easy for T ′. For T ′′ we use a filtration again. �

Lemma 1.30. Let K0 be an object of Db
ctf (X0,Λ). If dimX0 = 0, we have that T ′(X0,K0) =

T ′′(X0,K0).

Proof. Omitted. �

We are now ready to show that Theorem 1.25 implies Theorem 1.24.



10 1. THE GENERALIZED TRACE FORMULA

Theorem 1.31. Theorem 1.24 follows from Theorem 1.25, i.e., the Weak “Local is Global” The-
orem implies the Strong “Local is Global” Theorem.

Proof. Let X0 be a variety over Fq and let Λ be a noetherian torsion ring which gets killed
by some integer coprime with p. Let K0 be an object of Db

ctf (X0,Λ). Assuming Theorem 1.25,
we want to show that ∑

x∈XFrob

Tr(Frob∗,Kx) = Tr(Frob∗, RΓc(X,K)).

We begin with the reductions for X0.

(1) By noetherian induction and Lemma 1.28, we may and do assume that X0 is affine.
(2) Since X0 is affine, there exists5 a morphism f : X0 −→ Y0 with dimY ≤ dimX − 1 such

that each scheme-theoretic fibre f−1(y) is of dimension ≤ 1. By induction on dimX and
the proper6 base change theorem ([?, Chapter I, Theorem 8.7], we may and do assume
that dimX0 ≤ 1.

(3) By Lemma 1.28 and Lemma 1.30, we may and do assume that dimX0 = 1.
(4) We may and do assume that X0 is an integral affine curve over Fq. In fact, write

X0 = X1 ∪ . . . ∪ Xm for the decomposition into irreducible components. Then the
mutual intersections are finite sets of closed points which we may throw away by Lemma
1.30. Applying Lemma 1.28 with U = ∅ and Y = Xred allows us to assume X0 is reduced.

(5) We may and do assume that X0 is smooth over Fq. In fact, combining Lemma 1.28 and
Lemma 1.30, we may throw away any finite set of points. Since there are only a finite
number of singular points, we may assume that X0 is nonsingular. Since Fq is perfect,
we may assume that X0 is smooth over Fq.

(6) We may and do assume that X0 is a smooth geometrically integral affine curve. We just
have to show that we may assume X0 is geometrically connected. But how? (I think one
can consider the decomposition as before. The intersections are closed points. But why
can we throw these away?

(7) We may and do assume that X0 is a smooth geometrically integral affine curve without
rational points. In fact, we only have to show the last statement. In fact, combining
Lemma 1.28 and Lemma 1.30 again, we may throw away any finite set of points. But
there are only a finite number of rational points.

Now, we have almost reduced to Theorem 1.25. Firstly, the assumption on K follows from the
definition of Db

ctf (X,Λ) and Lemma 1.29. Finally, the assumption on Λ follows from considering

its primary decomposition. Since there are no rational points, the fixed point subscheme XFrob is
empty. Therefore, the formula we want to prove reduces to

0 = Tr(Frob∗, RΓc(X,K)).

This is precisely the statement of Theorem 1.25. �

7. Informal intermezzo on remaining steps

We want to prove the Weak “Local is Global” Theorem. This will conclude our proof of Grothendieck’s
generalized Lefschetz theorem (Theorem 1.2). The proof of the Weak “Local is Global” Theorem
proceeds in two steps. The first step uses Weil’s classical trace formula. The second step uses
general facts concerning traces associated to finite étale covers.

5You don’t need Noether’s normalization lemma for this, I believe. You just put X0 in an affine space of
minimal dimension. Then you take the projection. Where is Noether?

6This has never been written down for this Theorem. In fact, Grothendieck gives the details of such a compu-

tation but for a different theorem. Namely, Grothendieck does it in his proof of the cohomological interpretation

of the L-function.
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8. Weil’s classical trace formula

We will formulate Weil’s theorem using the language of intersection theory on smooth projective
surfaces (over algebraically closed fields). See [Har, Chapter V.1] and [Liu, Chapter 9.1].

Let X be a smooth projective integral curve over an algebraically closed field k.

Definition 1.32. The diagonal of X is the morphism ∆X : X −→ X ×k X. The corresponding
divisor in A1(X ×k X) = CH1(X ×k X) is denoted by [∆X ]. For a non-constant morphism
f : X −→ X, we let [ΓX ] ∈ A1(X ×X) be the class of the graph of f . We define

v(f) := degX×X ([Γf ] · [∆X ]) .

Note that v(f) is the number of fixed points of f counted with their multiplicity if f has isolated
fixed points.

Remark 1.33. A non-constant morphism of smooth projective connected curves f : X −→ Y
over an algebraically closed field is finite and flat. It is finite because it is surjective. Furthermore,
it is flat because the local rings of a nonsingular curve are discrete valuation rings.

Example 1.34. The base field is Fp. A line in P2 is a subvariety given by an equation of the
form ax + by + cz = 0. Two distinct lines intersect in a unique point. Let X be the union of
two distinct lines. There is an obvious automorphism of X. Namely the automorphism f which
switches the lines. Although X is singular, note that v(f) = 1.

As we mentioned in the previous section, we will use the following

Theorem 1.35. (Weil’s classical formula) Let f : X −→ X be a morphism with isolated fixed
points. Let ` be a prime number which is invertible in k, i.e., ` and the characteristic of k are
coprime. Then

v(f) =

2∑
i=0

(−1)i Tr(f∗, Hi(X,Q`)).

Proof. We already mentioned that this follows from the properties of a Weil cohomology in
the proof of Theorem 1.1. �

Example 1.36. Let X be the union of two distinct lines and let f be the automorphism of X
given by switching the lines. Here are the cohomology groups:

H0(X,Q`) = Q`, H1(X,Q`) = 0 H2(X,Q`) = Q` ⊕Q`.

The action of f on H0(X,Q`) is given by the identity id : Q` −→ Q`. The action of f on
H2(X,Q`) is given by the matrix (

0 1
1 0

)
.

One easily checks that Tr(f∗, H∗(X,Q`)) = 1. The unique point of intersection!

Remark 1.37. Of course, Weil didn’t use étale cohomology explicitly in his formulation. Let us
explain his formulation for k = Fq. We use the notation of the above Theorem. Note that

2∑
i=0

(−1)i Tr(f∗, Hi(X,Q`)) = 1− Tr(f∗, H1(X,Q`)) + deg f.

Weil’s classical formula states that

v(f) = 1− Tr(f∗, Jac(X)) + deg f,

where Jac(X) is the Jacobian of X over k. Let us show that this equality is equivalent to the
above. In fact, it suffices to show that we have a functorial isomorphism Jac(X)[`] ∼= H1(X,µ`).
(The trace of f∗ on Jac(X) modulo `n is given by the trace of f∗ on Jac(X)[`n] over Z/`nZ.) Since
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H1(Xet,Gm) = Pic(X) (for any scheme X), the long exact sequence of cohomology associated to
the Kummer sequence

{1} −→ µ`n −→ Gm −→ Gm −→ {1}
shows that

H1(Xet, µ`n) = Pic(X)[`n].

One then concludes via the short exact sequence

0 −→ Jac(X) −→ Pic(X) −→ Z −→ 0

and the choice of an isomorphism of µ`n(k) with F`n .

Remark 1.38. The goal of this groupe de travail is Deligne’s proof of the Riemann hypothesis for
varieties over finite fields. In the case of smooth projective integral curves, we can combine Weil’s
classical formula with the Hodge index theorem for surfaces to prove that the Riemann hypothesis
holds for smooth projective geometrically integral curves over some finite field. (Actually, to prove
the rationality of the zeta function, one can just as easily use the Riemann-Roch theorem7.)

9. The first key formula

We now prove the first formula we need to prove the Weak “Local is Global” Theorem.

Lemma 1.39. (Formula 1) Let X0 be a smooth irreducible affine curve over Fq with no rational
points and let Λ be a noetherian torsion ring which gets killed by a power of a prime `. We assume
` is invertible in Fq. Let f : Y0 −→ X0 be a finite étale Galois morphism with Galois group H
and Y0 connected. Then, for any h in H, we have that

2∑
i=0

(−1)i Tr((Frob ◦h−1)∗, Hi
c(Y,Q`)) = 0.

Proof. Consider a nonsingular projective compactification Y (resp. X) of Y (resp. X). We
have the following diagram

Y

f

��

// Y

f

��
X // X

,

where the horizontal maps are open immersions. Let h be in H. Consider the endomorphism
Frob ◦h−1 of Y . Note that Y is a smooth projective integral curve and that the fixed points of
Frob ◦h−1 in Y − Y are of multiplicity 1. Therefore, the fixed points of Frob ◦h−1 on Y are the
fixed points of Frob ◦h−1 on Y not lying in Y −Y . Let us show that Frob ◦h−1 has no fixed points
on Y . In fact, suppose that y is a fixed point of FrobY ◦h−1. Since

f(y) = f(FrobY h
−1y) = FrobX f(h−1y) = FrobX f(y),

we have that f(y) is fixed under FrobX . Therefore, we have that f(y) is a rational point of X.
Since X has no rational points, we see that y doesn’t lie above X. Therefore, it lies above X −X.
Therefore, it lies in Y − Y . In particular, we have that

vY (Frob ◦h−1)− vY−Y (Frob ◦h−1) = 0.

Write j : Y −→ Y for the open immersion and consider the associated short exact sequence

0 −→ j!Q` −→ Q` −→ Q`|Y−Y −→ 0.

Recalling the sign convention, the long exact sequence associated to this sequence shows that

2∑
i=0

(−1)i Tr((Frob ◦h−1)∗, Hi
c(Y,Q`))

7I’m planning on writing this out one day.
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equals

2∑
i=0

(−1)i Tr((Frob ◦h−1)∗, Hi
c(Y ,Q`))−

2∑
i=0

(−1)i Tr((Frob ◦h−1)∗, Hi
c(Y − Y,Q`)).

(Compare this to Lemma 1.28.) By Weil’s classical formula and Example 1.3, we conclude that

2∑
i=0

(−1)i Tr((Frob ◦h−1)∗, Hi
c(Y,Q`)) = vY (Frob ◦h−1)− vY−Y (Frob ◦h−1) = 0. �

10. Traces, finite étale covers and the last step

We now give the last step of the proof of the Weak “Local is Global” Theorem.

Let X0 be a smooth irreducible affine curve over Fq with no rational points and let Λ be a
noetherian torsion ring which gets killed by a power of a prime `. We assume ` is invertible in
Fq. Just as in the statement of Theorem 1.25, let K = F be a finite locally constant sheaf of
Λ-modules on X whose stalks are finite projective Λ-modules. To finish our proof, we need to
show that

Tr(Frob∗, RΓc(X,F)) = 0.

Definition 1.40. Let H be a finite group and H+ = H × Z≥0. For h in H+, we define

Zh = {h′ ∈ H | h′h = hh′}.

Lemma 1.41. (Formula 2) Let f : Y0 −→ X0 be a finite étale Galois morphism with Y0 connected.
Let H be the corresponding Galois group. Suppose that f∗F0 is constant. Then, we have that

Tr(Frob∗, RΓc(X,K)) =

′∑
h

1

#Zh

∑
(−1)i Tr((Frob ◦h−1)∗, Hi

c(Y,Q`)) · TrΛ(h,M).

Here M is the valeur constante H0(Y0, f
∗F0) of F0. Note that M is a Λ[H]-module which is

projective as a Λ-module. Also, we let TrΛ(h,M) be the image of Tr(h,M) ∈ Λ[H]# in Λ# via
the natural morphism Λ[H]# −→ Λ#. The sum

∑′
h is over the conjugacy classes of H.

Assuming this Lemma, we can now prove Theorem 1.25.

Proof. (Weak “Local is Global”) We can choose a finite étale Galois morphism f :
Y0 −→ X0 with Y connected such that f∗F0 is constant. (Here’s a short argument for why this
exists. Firstly, being locally constant is equivalent to being representable as a functor. Then being
constructible is equivalent to being represented by a finite étale scheme over X0. Galois theory
then accounts for the existence of f as above.) Now, substitute Formula 1 into Formula 2 to
conclude that

Tr(Frob∗, RΓc(X,F)) =

′∑
h

1

#Zh

(∑
(−1)i Tr((Frob ◦h−1)∗, Hi

c(Y,Q`))
)
· TrΛ(h,M)

=

′∑
h

1

#Zh

∑
(−1)i0 · TrΛ(h,M) = 0. �

Due to lack of time, I didn’t manage to write down nor present the proof of Lemma 1.41. Needless
to say, it is not very hard and consists simply of some “canonical” computations with groups. It
is also the only place of the proof which uses noncommutative rings.
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CHAPTER 2

Application of the Lefschetz formula to equivariant varieties

Deligne and Lusztig used Grothendieck’s generalized trace formula to study equivariant varieties.
Since this illustrates the use of our Theorem a bit more (outside the realm of the Riemann hy-
pothesis) I decided to write some notes on it.

Let k be an algebraic closure of Fp (p prime number) and let X be a finite type separated k-scheme.

As a consequence of the Lefschetz trace formula we will give a proof of the following Theorem (see
[DeLu, Paragraph 3]). (Recall that the action of a group G with identity e on a set X is said to
be free if for all g in G and x in X, we have that gx = x if and only if g = e.)

Theorem 2.1. Let σ : X −→ X be an automorphism of X. We assume σ to be of finite order.
Then

(1) For any prime number l 6= p, we have that

Tr(σ∗, H∗c (X,Q`))

is an integer independent of `.
(2) Assume the action on X of the cyclic group H generated by σ to be free. Also, assume

that the order of H is divisible by a prime number l 6= p. Then

Tr(σ∗, H∗c (X,Q`) = 0.

(3) Write σ = su, where s and u are powers of σ such that ord(s) is coprime with p and
ord(u) is a power of p. Then

Tr(σ∗, H∗c (X,Q`) = Tr(u∗, H∗c (Xs,Q`).

Before we give the proof, let us give some corollaries and do some examples.

Corollary 2.2. The compactly supported Euler characteristic
∑

(−1)i dimQ`
Hi
c(X,Q`) of X is

independent of `.

Proof. Apply (1) with σ = idX . �

Corollary 2.3. Let π : Y −→ X be a finite étale morphism such that deg π and p are coprime.
Then

ec(Y ) = deg πec(X).

Proof. Firstly, we may assume that Y and X are connected. Also, we may assume that π
is Galois. That is, there is a finite group G acting freely on Y such that X is the quotient Y/G.
In fact, assume the Corollary to be true for Galois covers. Let Z −→ Y −→ X be the Galois
closure of π : Y −→ X. Let G be its group and let H be the subgroup corresponding to the cover
Z −→ Y , i.e., we identify Y with Z/H and X with Z/G. Then

ec(X) =
1

|G|
ec(Z) =

|H|
|G|

ec(Y ) =
1

deg π
ec(Y ).

Therefore, the result follows in the general case.

15
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Thus, we have a finite group G acting freely on Y such that X = Y/G. Note that deg π = |G|.
Apply (2) to see that Tr(g,H∗c (Y )) = 0 for any g 6= e in G. By character theory for Q`[G], we
may conclude that the element

[H∗c (Y,Q`)] :=
∑

(−1)i[Hi
c(Y,Q`)]

in the Grothendieck group K0(Q`[G]) of finitely generated Q`[G]-modules is given by an integer
multiple of [Q`[G]]; the class of the regular representation. So we may write

[H∗c (Y,Q`)] = m[Q`[G]],

where m ∈ Z. Now, note that Hi
c(X,Q`) =

(
Hi
c(Y,Q`)

)G
for any i ∈ Z. Therefore, we have that

[H∗c (X,Q`)] = m

in K0(Q`[G]). In particular, we see that ec(X) = dimQ`
[H∗c (X,Q`)] = m. We conclude that

ec(Y ) = dimQ`
[H∗c (Y,Q`)] = m|G| = ec(X)|G| = deg πec(X). �

Example 2.4. Consider the finite étale morphism A1
k −→ A1

k given by z 7→ zp − z. This is a
finite étale morphism. We see that the hypothesis on the degree of π is necessary in Corollary 2.3.

Question 1. Does an analogous theorem hold in the case of `-adic sheaves? The proof seems to use
only the Lefschetz trace formula for Frobenius and Q` and some general facts on automorphisms
of Q`.

Proof. (Theorem 2.1) Here’s the idea. Consider Frob ◦h, where h ∈ H. This is the
Frobenius corresponding to some way of lowering the base field from Fq to Fqn . So we can apply
the generalized Lefschetz trace formula. Since Frob∗ and h∗ commute as morphisms on the Q`-
vector spaces Hi(X,Q`), some easy linear algebra finishes the proof of 1. To prove 2 one uses that
we may realize the trace Tr(h∗, H∗c (X,Q`) as the character of a virtual projective Z`[H]-module.
(This uses Theorem 1.19 in an essential way!) Finally, 3 follows from 2. �



CHAPTER 3

Derived categories

Here we should explain what we mean by a filtered derived category and the trace of an endomor-
phism of a perfect complex in the filtered derived category.
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