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1. Introduction: Gross-Zagier formula and archimedean local heights

1.1. Gross-Zagier formula.

1.1.1. Recall that the aim of this workgroup is to present the formula of Gross and Za-
gier. This formula is modeled on the Dirichlet’s class number formula, in the spirit of the
conjectures of Beilinson. From the broad picture, it expresses the first derivative (special
value) of a Rankin-Selberg L-function in terms of arithmetic invariants and the height of
an explicit divisor. The height plays the role of the Dirichlet regulator. The aim of today’s
talk is to give the necessary computations for the archimedean part of this height.

1.1.2. Before going more deeply into this project, recall the geometric setting we have seen
previously. We work with Hegneer points of the modular curve X0(N), associated with
the modular group Γ0(N). The latter latter is seen as a scheme over Q. A Hegneer point
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2 FRÉDÉRIC DÉGLISE

is a K-rational point of X0(N) for an imaginary quadratic field K — it corresponds to a
CM-elliptic curve over K. We will therefore fix such a point x ∈ X0(N)(K).

1.2. Global and local heights.

1.2.1. In the three precedent talks, we have presented the theory of heights, via three
approaches: Weil height functions defined on varieties over number fields up to bounded
functions, Néron-Tate canonical heights which remove that dependence for abelian vari-
eties, and Néron local heights. The latter allows to decompose Néron-Tate heights into a
sum of local heights, which over the number field K are indexed by all places of K. In
fact, we will restrict to the abelian variety J0(N), jacobian of the curve X0(N).
Today, we will focus on archimedean places v of K. As K is totally imaginary, the

associated archimedean field is C. Let M = X0(N)vK(C) be the associated Riemann
surface. A local height at the complex place v, associated to a 0-degree divisor a on M is
a real function

ha,v :
(
M − Supp(a)

)
→ R

continuous and with prescribed value when a = div(f) is principal (see (1.2.2.a) below).
Note that this function automatically extends to 0-degree divisors b on M provided its
support is disjoint from that of a. In fact, let us introduce the following useful variant.

Definition 1.2.2. An (archimedean) local height pairing at the complex place v of X0(N),
or equivalent a local height on the Riemann surface M = X0(N)(C), is a real function:(

Div0(M)×Div0(M)−Z
)
→ R, (a, b) 7→ ⟨a, b⟩

where Div0(M) denotes the 0-degree divisors of M and

Z = {(a, b) | Supp(a) ∩ Supp(b) = ∅}
which is bi-additive, bi-continuous and such that for a principal divisor b = div(f) and
x ∈ M , one has:

(1.2.2.a) ⟨x, div(f)⟩ = log
(
|f(x)|2

)
.

Remark 1.2.3. (1) The definition can be extended to arbitrary places (see Leonardo’s
talk). One usually write ⟨−,−⟩v for local height pairings associated to a place v.

(2) Normalization (1.2.2.a) is chosen so that once we take the sum over all places,
one gets a global height (or global height pairing) which will depends only on the
rational equivalence class of divisors.

(3) The square appearing in the above convention accounts to the fact we are looking
to complex places, and one has to take care of the corresponding two conjugate
complex embedding to get the right product formula.

1.3. Archimedean heights and Green functions.

1.3.1. We next consider the compact Riemann surface M = X0(N)(C).
Fix two points x0, y0 ∈ M . A local height pairing on M induces a function:

(1.3.1.a) G : M ×M − δM ∪ {(x0, ∗), (∗, y0)} → R
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according to the formula:

G(x, y) = ⟨x− x0, y − y0⟩.
This function is continuous, and admits logarithmic poles along the boundary.

There is a well-known class of real functions on open subsets of M with logarithmic
poles. These are the Green functions, which we will review shortly in the next section.

2. Geometry and analysis on modular curves

Here we give some brief overview of the underlying geometro-analytic theory underlying
Gross and Zagier construction of archimedean local heights via Green functions. Good
references are [Jos17, For81]. We will also quickly recall the definition of Eisenstein series
(in the complex case). For that part, the reader is advised to consult [Iwa02].

2.1. Orbifold structure.

2.1.1. The topological space X0(N)(C) is obtained as the quotient

M = H∗/Γ0(N),

where H is the upper half-plane and H∗ = H ∪ P1(Q). The action of Γ0(N) is not free,
so one can naturally define a orbifold H∗//Γ0(N), which is a geometric enrichment of
the above topological quotient. However, the above quotient has a natural structure of a
compact Riemann surface,

M = X0(N)(C)

as we have seen in the preceding talks. This is in fact the associated coarse moduli space.
This is the usual geometry that one uses on the latter space. But nevertheless, one has
to take care about the orbifold points, which correspond to points of H with non-trivial
stabilizers. Indeed, non-trivial stabilizers will be reflected in the choice of an adequate
uniformizing parameter for the Riemannian surface M , that is a complex local coordinate.

Recall that there are two types of orbifold points:

(1) elliptic points in H, with finite stabilizer of order 2 or 3;
(2) cusps corresponding to P1(Q), whose stabilizers are infinite parabolic subgroups of

SL2(R).

In the sequel, we will also consider the open Riemannian surface

M o = Y0(N)(C) = H∗/Γ0(N) ⊂ M

obtained by removing the cusps.

2.1.2. Convention on actions.– Note that we will view Γ0(N) as a subgroup of PSL2(R),
with its natural action on H. This is slightly unusual compare to the classical notation.
This justified as the natural action of SL2(R) on H always factor as an action of

PSL2(R) = SL2(R)/{±Id}.
This is also justified as the latter group is precisely the group of isometries of the Poincaré
upper half-place H with is canonical hyperbolic metric (see Example 2.2.3 for recall).
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2.2. Analysis on Riemann surfaces.

2.2.1. Let M be a smooth variety. A Riemannian metric g on M is a smooth family of
scalar products gp : TpM × TpM → R. One associates to g the Laplacian differential
operator ∆g of order 2. Recall that a Riemannian manifold is a smooth variety equipped
with a conformal class of Riemannian metrics.

Example 2.2.2. Consider the flat Riemann surface C with local coordinate (x, y). Then
the Laplacian differential operator is simply defined as:

∆ =
∂2

∂x
+

∂2

∂y
.

Example 2.2.3. On the (Poincaré) upper half-plane H with local coordinate (x, y) (such
that the complex coordinate is z = x+ iy), one can consider the hyperbolic metric:

h =
dx2 + dy2

y2
=

| dz|2

(ℑz)2
.

Then, the associated Laplacian is:

∆h = y2
(
∂2

∂x
+

∂2

∂y

)
.

Beware that the convention for automorphic forms is to take opposite signs. Therefore we
will just define the Laplacian with arithmetic conventions as

∆ = −∆h.

2.3. Harmonic functions and Eisenstein series. Let us recall the following classical
definition.

Definition 2.3.1. Let (M, g) be a Riemannian manifold. A smooth function f : M → R
is harmonic if it satisfies the partial differential equation:

∆g(u) = 0.

This does not depend on the choice of g in its conformal class.

In other words, harmonic functions are the smooth functions lying in the kernel of the
Laplacian.

Remark 2.3.2. (1) It is a classical theorem that harmonic functions are functions that
are locally the real part of a holomorphic function.

(2) The convention of signs on Laplacian does not change the notion of harmonicity!

2.3.3. When M is compact On a compact connected manifold, harmonic functions consists
only of the constant functions.

On a non-compact Riemannian manifold of finite volume, such as the open modular
curve Y0(N) = Γ0(N)\H, the analytic behaviour of the Laplacian is more subtle, because
the action of the Laplacian on L2(Y0(N)) has a much richer spectral structure.
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Besides its discrete spectrum (generated by square-integrable eigenfunctions), the Lapla-
cian has a continuous spectrum, which reflects the presence of the cusps. Let us give an
example from classical automorphic theory.

Definition 2.3.4. For ℜ(s) > 1, the Eisenstein series attached to the cusp ∞ of Γ0(N)
is defined by

EN(z, s) =
∑

γ∈Γ∞\Γ0(N)

ℑ(γz)s,

where Γ∞ ⊂ Γ0(N) denotes the stabilizer of the cusp ∞. The series converges absolutely
for ℜ(s) > 1 and defines a smooth Γ0(N)-invariant function on H.

The Eisenstein series is not harmonic in general; instead, it is an eigenfunction of the
(hyperbolic) Laplacian, satisfying

∆EN(·, s) = s(s− 1)EN(·, s).
As s varies, these functions parametrize the continuous spectrum of the Laplacian on Y0(N)
and describe the asymptotic behaviour of eigenfunctions near the cusps.

2.4. Potential theory and Green, functions. In order to formulate Laplace equations
with singular right-hand sides, it is convenient to enlarge the space of smooth functions by
allowing generalized functions in the sense of Schwartz.

Definition 2.4.1. Let M be a smooth manifold. The R-vector space of distributions on
M is defined as

D(M) = C0
(
C∞

c (M),R
)
,

the space of continuous linear forms on the space C∞
c (M) of compactly supported smooth

functions, equipped with its natural Fréchet topology.

In other words, the space of distributions of M is the continuous dual of the space of
test functions C∞

c (M). For a distribution T ∈ D(M) and a test function f ∈ C∞
c (M), we

write
⟨T, f⟩ = T (f).

Example 2.4.2. Given a point p ∈ M , the Dirac distribution at p is defined by

⟨δp, f⟩ = f(p).

It represents a unit point mass concentrated at p.

2.4.3. Consider now a Riemannian manifold (M, g), with associated Laplacian ∆g. Fix a
point p ∈ M .

A Green function with pole at p is, informally, a function G(·, p) which is harmonic on
M \ {p} and has a logarithmic singularity at p.

Example 2.4.4. Consider the flat Riemannian manifold C, with Laplacian as in (2.2.2).
Then, a Green function is a real function G(z, z′) of two complex variables, which is

defined for z ̸= z′ by the partial differential equation (in the distribution sense):

∆zG(z, z′) = δz′
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using the Dirac distribution as above. Solutions of this differential equation are of the
form:

G(z, z′) =
1

2π
log |z − z′|+ h(z) =

1

4π
log |z − z′|2 + h(z)

where h is a harmonic function on C− {z′} (locally bounded near z′).

Let us be more precise, using the notion of smooth measure on M .

Definition 2.4.5. Let again (M, g) be a Riemannian manifold. Fix a point p ∈ M . A
Green function onM with pole at p is a function G(−, p) satisfying the differential equation
(in the distributional sense):

∆gG(−, p) = δp − µ,

where µ = φ. dvolg is a “smooth density”. Here φ is a smooth function and d volg is the
volume form associated to g.

Remark 2.4.6. (1) In other words, G(−, p) is harmonic away from p and has logarithmic
singularity at p. The latter property is encoded by the Dirac distribution.

(2) Note that the right-hand side must have total mass zero:

⟨δp − µ, 1⟩ =
∫
M

(
δp − µ

)
= 0

in order for the equation to admit solutions. When M is compact and connected,
the latter condition forces the equality:

φ =
1

vol(M)
.

In particular, Green functions are unique, up to a constant function. A mean value
zero condition therefore guarantees uniqueness.

(3) In general, the presence of the term µ reflects the fact that the Laplacian has non-
trivial kernel. When M is non-compact, as will be the case for modular curves due
to the presence of cusps, uniqueness is no longer automatic. One needs additional
normalization and growth conditions at infinity in order to single out a canonical
Green function.

2.4.7. Let us explain the problematic that Gross and Zagier (following previous works)
faced in their paper,, in order to define the Green function that will induce the correct
archimedean local height, as alluded in 1.3.1.

On the hyperbolic plane H endowed with its hyperbolic metric, Green functions depend
only on the hyperbolic distance between two points. This leads to an explicit differential
equation in one real variable, whose solutions can be expressed in terms of classical special
functions. Passing to the quotient by a congruence subgroup Γ0(N), one obtains Green
functions on the modular curve Y0(N), provided suitable invariance and growth conditions
at the cusps are imposed.

In the non-compact case, such as modular curves, the Laplace equation above has no
solution without further modification. This difficulty is a manifestation of the continuous
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spectrum of the Laplacian and necessitates additional normalization terms. In the con-
struction of Gross-Zagier, these corrections are achieved using Eisenstein series, whose role
is precisely to control the behavior of functions at the cusps while preserving harmonicity
away from the diagonal.

We will see these principles in action in the next section.

3. Gross-Zagier archimedean local height

3.1. Axiomatic description. Let us go back to the definition of an appropriate local
height pairing on the Riemann surface X0(N)(C). We continue the discussion started in
1.3.1.

Lemma 3.1.1. Let M be a Riemann surface, and consider a function

G : M ×M −
(
∆M ∪ {(x0, ∗), (∗, y0)}

)
→ R

as in (1.3.1.a). If G(x, y) is bi-harmonic (see Definition 2.3.1) and has logarithmic sin-
gularities of residues −2 (resp. 2) in y at {x, x0} (resp. in x and {y, y0}), then the real
function of 0-degree divisors a =

∑
i ni.xi and b =

∑
j mj.yj defined as:

(3.1.1.a) ⟨a, b⟩ =
∑
i,j

nimj.G(xi, yj)

defines a local height pairing on M .

Proof. (See [GZ86], beginning of II.§2.) According to the above formula, the pairing is
well-defined and bicontinuous on the appropriate domain as the condition of residue +2
shows that the logarithmic poles cancel as we consider 0-degree divisors. Then harmonicity
and the condition on residues −2 shows that for any meromorphic function f , the function
of x

⟨x, div(f)⟩ − log
(
|f(x)|2

)
is harmonic on M . As M is a compact Riemann surface, this implies that this function
is a constant cf . As we take sum of 0-degree divisors, one gets the required property of
⟨·, ·⟩. □

3.1.2. We now specialize the discussion to the case of the modular curve X0(N)(C) =
Γ0(N)\X0(N). As usual in this context, we will define the function G(z, z′) up-stairs,
that is on H × H after taking uniformizing z, z′ ∈ H corresponding to x, x′ ∈ M . The
following definition summarize the needed properties of such a function. These properties
are extracted from [GZ86, (2.3)] except that we have added the normalization condition
(d5) that Gross and Zagier impose later in the text.1

Definition 3.1.3. A function G : H×H\∆ → R satisfies the Gross-Zagier conditions if:

(a) (Γ0(N)-invariance)

∀z, z′ ∈ H,∀γ, γ′ ∈ Γ0(N), G(γz, γ′z′) = G(z, z′);

1This is done by considering the constant C which is determined just before the statement of Proposition
(2.22).
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(b) (harmonicity) for fixed z′, the function z 7→ G(z, z′) is harmonic for z /∈ Γ0(N)z′, and
similarly in the other variable;

(c) (logarithmic pole) as z′ → z one has

G(z, z′) = ez log |z − z′|2 +O(1),

where ez is the order of the stabilizer of z in Γ0(N);
(d) (growth at cusps) for fixed z = x+ iy, one has

G(z, z′) = 4πy′ +O(1) (z′ = x′ + iy′ → ∞),(d1)

G(z, z′) = O(1) (z′ → any cusp ̸= 0,∞),(d2)

G(z, z′) = 0 (z′ → 0).(d3)

Similarly, for fixed z′,

G(z, z′) = 4π
y

N |z|2
+O(1) (z = x+ iy → 0),(d4)

G(z, z′) = O(1) (z → any cusp ̸= 0,∞),(d5)

G(z, z′) = 0 (z → ∞).(d6)

Conditions (a), (b), and (c) implies that G descends to a Green function on the open
Riemann surface Y0(N)(C): when z′ is not elliptic nor a cusp, these properties translate
to the differential equation on X0(N):

(3.1.3.a) ∆zG(z, z′) = 4π.δz′ + h(z, z′)

where h is an undetermined harmonic function h.
Then condition (d) implies that G(z, z′), seen as a function on z, z′ ∈ M o = Y0(N)(C),

can be extended harmonically at cusps that are not 0 or ∞. Moreover, it states that is
has controlled growth at 0 and ∞, and this property implies that h(z, z′) must vanish. In
other words, (d) removes the intrinsic ambiguity of the above differential equation on the
non-compact Riemann surface M o.

Remark 3.1.4. Note that condition (c) should be understood intrinsically in terms of the
orbifold structure of Y0(N). At an elliptic point of order ez, the natural local uniformizing
parameter for the Riemann surface X0(N) is given by ρ(z′) = (z′ − z)ez ; the logarithmic
singularity of G is required to be logarithmic with respect to this parameter.

Similarly, at the cusps ∞ and 0, the uniformizing parameters are e2πiz and e−2πi/(Nz),
respectively. This explains the precise form of (d).

The main result we want to prove, extracted from [GZ86, §2], is the following theorem.

Theorem 3.1.5. There exists an explicit function G(z, z′) that satisfies all the required
properties of the preceding definition.

In the remaining of this section, we will prove this theorem. An explicit formula for
G(z, z′) will be given in (3.4.3.a). In particular, we will freely use the notation from
the previous proposition for the required properties.
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3.2. Resolvent equation for Laplacian.

3.2.1. The first step to prove Theorem 3.1.5 is the following classical trick to ensure the
periodicity property (a). We consider a diagonally PSL2(R)-invariant function g(z, z′) on
(H×H−∆H), that is satisfying:

(3.2.1.a) ∀γ ∈ PSL2(R),∀z, z′, g(γz, γz′) = g(z, z′)

and use a simple averaging procedure to define our Green function:

(3.2.1.b) G(z, z′) :=
∑

γ∈Γ0(N)

g(z, γz′)

provided that this series converge. Then, the resulting function G(z, z′) will automatically
satisfy property (a) — this is an easy check.

We next find appropriate properties on g that guarantee properties (b), (c), (d) of G.
Recall that properties (b) and (c) are equivalent to the “distributional Laplace” differential
equation (3.1.3.a). If we naively try to resolve the corresponding differential equation for
g(z, z′) the solution will never give convergent series (3.2.1.a). Instead, we proceed by
perturbing the equation by a parameter ϵ = s(s− 1), and resolve the following (ordinary)
differential equation (for z ̸= z′):

(3.2.1.c) ∆zgs(z, z
′) = s(s− 1).gs(z, z

′).

We will then obtain the correct function by taking limit at s → 1, provided the limit exists.

3.2.2. The next step is to remark that the periodicity property (3.2.1.a) is equivalent to
say that a function g(z, z′) satisfying this property depends only on the hyperbolic distance
w = dh(z, z

′). In other words, it can be written as:

g(z, z′) = F (w).

Then, (3.2.1.c) can be rewritten, after the change of variable

t = coshw = cosh dh(z, z
′) = 1 +

|z − z′|
2yy′

as the differential equation in the variable Q(t):

(1− t2).Q′′(t)− 2t.Q′(t) + s(s− 1).Q(t) = 0.

This is a Legendre differential equation of second type (up to the change of variables
l = s+ 1). It has two linearly independent solutions, and the one which is useful for us is
the non-polynomial one (also called Legendre functions of second kind):

Qs−1(t) :=

∫ ∞

0

(
t+

√
t2 − 1 coshu

)−s
du.

Therefore a solution to the (3.2.1.c) is

gs(z, z
′) := Qs−1

(
1 +

|z − z′|
2yy′

)
.
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Our choice of Legendre function ensure that Qs−1(t) = O(t−s) so that the sum deduced
from the averaging procedure (3.2.1.b):

(3.2.2.a) GN,s(z, z
′) :=

∑
γ∈Γ0(N)

g(z, γz′)

converges absolutely for s > 1. According to the construction, the resulting function is
defined overM o×M o−∆Mo , satisfies property (a), and the (ordinary) differential equation:

∆zGN,s(z, z
′) = s(s− 1).GN,s(z, z

′).

Remark 3.2.3. In the classical terminology, GN,s(z, z
′) is called the resolvent kernel of the

hyperbolic Laplacian on M o.

3.3. Renormalisations via Eisenstein series. The second step to prove Theorem 3.1.5
is to renormalize the Green function GN,s(z, z

′) so that the limit as s → 1 exists and
satisfies the appropriate harmonicity property, property (b). Property (a) and (c) will
automatically follow from the construction.

3.3.1. For fixed z, z′, the function GN,s(z, z
′) of s > 1 has a simple pole at s = 1 with

residue:

(3.3.1.a) κN :=
−4π

volh(M o)
= − 12

[SL2(Z) : Γ0(N)]
.

This is just a computation. However, the result is not surprising, given the general form
of Green functions as explained in Remark 2.4.6(2). In fact, the sign can be explained as
Gross-Zagier follow the tradition from arithmetician and use the ”negative” (hyperbolic)
Laplacian. The scalar 4π is explained by the choice of convention of Gross-Zagier, which
is chosen so that their final formula has a nice expression.

Therefore substracting the function κN

s−1
to GN,s(z, z

′) will ensure the required conver-
gence as s → 1. However, the resulting limit will not be harmonic, as a simple computation
of its Laplacian shows. In fact, one needs to substract a function with the same pole at
s = 1 and the same eigenvalue. According to Definition 2.3.4, such functions are given by
Eisenstein series. If one wants to guarantee at the same time guarantee respectively the
growth properties (d3), for the cusp z → 0, and (d1), for the cusp z′ → ∞, one is lead to
use the following Eisenstein series:

−4π.EN(wNz, s),−4π.EN(z
′, s)

where wN is the Atkin-Lehner operator of order N .
Summarizing, using definition (3.2.2.a) and the above notation, the following function

is both well-defined, satisfies properties (a), (b), (c) as well as the growth conditions in (d)
for z → 0 and z → ∞:

(3.3.1.b) G̃(z, z′) := lim
s→1+

[
GN,s(z, z

′) +
κN

s− 1
+ 4π.EN(wNz, s) + 4π.EN(z

′, s)

]
.
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Remark 3.3.2. Let us observe that, according to property (3.2.1.a) of gs(z, z
′), and the

above definition, one gets the relation:

(3.3.2.a) G̃(z, z′) = G̃(wNz
′, wNz).

3.4. Growth conditions at cusps.

3.4.1. We now need to check all the growth conditions of G̃(z, z′) stated in property (d).
Note that (d1) and (d3) are already known according to our use of Eisenstein series.

For the other properties, no miracle here: the writer of these notes is not aware of any
other method than explicit computation of the Taylor expansions of the three functions
GN,s(z, z

′), 4π.EN(wNz, s), 4π.EN(z
′, s) when z′ goes to cusps different from ∞ and z goes

to cusps different from 0.
The most painful property is the normalizing properties (d3) and (d6). In fact, according

to (3.3.2.a), it is sufficient to treat one of them, say (d6). In fact, the function G̃(z, z′)
does not satisfy (d6), but the following lemma shows that we can correct this by adding a
constant. It is proved as explained above, by computing Taylor expansions.

Lemma 3.4.2. For any z′, G(z, z′) → λN − 2κN where:

(3.4.2.a) λN = κN

logN + 2 log 2− 2γ + 2
ζ ′(2)

ζ(2)
− 2

∑
p|N

p log p

p2 − 1


where

γ = lim
n→∞

n∑
k=1

1

k
− log n

is the Euler constant and ζ(s) is Riemann’s zeta function.

3.4.3. The final definition for Gross-Zagier’s Green function, defined on (H × H − ∆H)
and defining a meromorphic function on M o ×M o −∆Mo is:

(3.4.3.a) G(z, z′) := G̃(z, z′)− λN + 2κN

using the notation of (3.3.1.a), (3.3.1.b) and (3.4.2.a).

3.5. Archimedean local height pairing.

Definition 3.5.1. We define the Gross-Zagier local archimedean pairing ⟨−,−⟩C on M o×
M o − ∆Mo according to formulas (3.1.1.a) using the function defined by (3.4.3.a), after
choosing representatives in H of points of M o.

Example 3.5.2. As an example, one gets for any distinct non-cuspidal points x, x′ of M =
X0(N)(C),

⟨x−∞, x′ − 0⟩C = G(z, z′)

for z, z′ respective representatives of x, x′.
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3.5.3. We need more notation for the following formula. Let m ≥ 1 be prime to N . Choose
non-cuspidal points x, x′ of M such that x does not belong to the support of Tm(x

′), where
Tm is the m-th Hecke operator. Write:

σi(m) =
∑
d|m

di.

and

Γm
0 (N) =

{(
a b
c d

)
| ad− bc = m, c = 0 mod N

}
.

One can define the following m-twisted functions :

(3.5.3.a) Gm
N,s(z, z

′) :=
1

2
.

∑
γ∈Γm

0 (N)

gs(z, γz
′)

G̃m(z, z′) := lim
s→1+

[
Gm

N,s(z, z
′) +

σ1(m)κN

s− 1
(3.5.3.b)

+ 4πσ1(m).EN(wNz, s) + 4πmsσ1−2s(m).EN(z
′, s)

]
.(3.5.3.c)

(3.5.3.d) Gm(z, z′) := G̃m(z, z′)− σ1(m)
(
λN − 2κN

)
.

Then one deduces from the definition of Tm:

⟨x−∞, Tm(x
′ − 0)⟩C = Gm(z, z′).

for respective representatives z and z′ of x and x′. Note that Tm(0) = σ1(m).0 so the left
expression is well-defined.

4. Arakelov geometry

4.0.1. From a broader perspective, Green functions are the archimedean analytic ingredient
in Arakelov geometry [Ara75]. The guiding idea is to enrich divisors on arithmetic varieties
with analytic data at the complex places, encoded by Green functions, so that one can
define intersection products incorporating both algebraic and analytic contributions.

In this framework, Arakelov constructed global height pairings on arithmetic surfaces
as (Arakelov) degrees of intersection products of (Arakelov) divisors. Arakelov theory was
then used and substantially extended by Faltings to prove the Mordell conjecture (finiteness
of C(K) for curves of genus > 1), see [Fal83, Fal84].

The theory was subsequently extended to general arithmetic schemes by Gillet-Soulé,
who introduced Arakelov Chow groups endowed with a well-behaved intersection pairing
and a corresponding notion of (Arakelov) degree. A cornerstone of this theory is the
arithmetic Riemann-Roch theorem proved by Gillet-Soulé. See [GZ86] for an overview of
these developments.

This framework was also used by Zhang, [Zha97], to extend the results of Gross and
Zagier to Shimura curves associated with quaternion algebras. More precisely, Zhang
developed an Arakelov-theoretic interpretation of archimedean height pairings for special
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cycles on Shimura curves, leading to Gross-Zagier type formulas in settings where modular
curves are replaced by their quaternionic analogues.

More broadly, Gillet-Soulé’s formulation of Arakelov geometry plays a central role in
the Kudla program, [Kud04]. This program predicts deep relations between arithmetic
intersection numbers of special cycles on Shimura varieties and Fourier coefficients, or
derivatives, of suitable automorphic forms, typically Eisenstein series. In this perspective,
Green functions and archimedean local height pairings provide the analytic input that
bridges arithmetic intersection theory and automorphic representation theory.
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