
DEFORMATIONS OF ELLIPTIC CURVES

MICHAŁ MRUGAŁA

§1. NOTATION AND MOTIVATION

Recall the Heegner setup (cf. notation sheet). Our goal is to compute the local height pairings

〈c, Tmdσ〉v
for non-archimedean places v of H. We will henceforth fix a non-archimedean place v.

Suppose a,b ∈ Div0(X)(Hv). Recall from Leonardo’s talk that local heights may be computed by
solving an intersection problem: If Xv is a proper, regular model for XHv over OHv and ã, b̃ are lifts
of a,b to Xv (one of which has zero intersection number with each irreducible component), then

(1) 〈a,b〉v = −
(
ã · b̃

)
logq.

To carry out this computation we need to do two things:

(1) Find a proper, regular model for XHv over Ov.
(2) Compute the intersection products (c̃ · T̃mdσ).

For these purposes:

• In Section 2 we describe the integral model of X.
• In Section 3 we discuss lifting Heegner diagrams to Ŏv, the maximal unramified extension

of Ov.
• In Section 4 we give an informal statement of the Serre–Tate theorem and a formal statement

of Grothendieck’s existence theorem.
• In Section 5 we introduce p-divisible groups and give a formal statement of the Serre–Tate

theorem.
• In Section 6 we introduce formal Lie groups to analyse the connected components of p-

divisible groups attached to elliptic curves.
• In Section 7 we describe the deformation theory of ordinary elliptic curves. In particular, we

define the Serre–Tate canonical lifts.
• In Section 8 we describe the deformation theory of supersingular elliptic curves. In particular,

we define Gross’ quasi-canonical lifts.

§2. INTEGRAL MODEL OF X

(2.1) Recall that Y0(N) is a moduli space parametrizing cyclic isogenies of degree N between elliptic
curves. More specifically, for any Q-scheme S

Y0(N)(S) '
{
φ : E −→ E ′

∣∣∣∣ E,E ′ elliptic curves over S
φ a cyclic isogeny of degree N

}/
∼ .

A cyclic isogeny is an isogeny φ : E→ E ′ such that
1
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(i) kerφmeets every irreducible component of every geometric fiber of E,
(ii) locally on S there is a point P such that

kerφ =

n∑
j=1

[jP]

as Cartier divisors on E.

(2.2) X = X0(N) is defined by relaxing the condition on E,E ′, we instead ask that they are generalized
elliptic curves. We will not define them here; for our purposes it suffices to have their description
over algebraically closed fields. In that case, there are two types of generalized elliptic curves:

(1) Elliptic curves.
(2) Néron polygons Cn: Let n ∈ Z>1. Define the Cn to be the scheme obtained from P1

S ×Z/nZ

by gluing ({∞}, i) with ({0}, i+ 1) for all i ∈ Z/nZ.

This moduli problem is not representable, we instead define the integral model of X to be the “best
approximation” to a representing object, called the coarse moduli scheme. This scheme exists and
parametrizes the objects we care about over algebraically closed fields. I will abuse notation and
write X for this integral model.

(2.3) X is a proper, flat curve over Z, smooth over Z[1/N]. To say more about the regularity properties
of X over Z we need the notion of automorphisms of geometric points of X. Let x be such a point of
X corresponding to an isogeny φ : E→ E ′ over an algebraically closed field k. The automorphism
group Autk(x) is the subgroup of (f, f ′) ∈ Autk(E)×Autk(E ′) such that

E E ′

E E ′

φ

f f ′

φ

commutes. Say x has non-trivial automorphisms if Autk(x) 6= 〈±1〉. We also need to distinguish
three types of field valued points of X:

(i) a point is ordinary if it corresponds to φ : E→ E ′ with E,E ′ ordinary,
(ii) a point is supersingular if it corresponds to φ : E→ E ′ with E,E ′ supersingular,

(iii) a point is a cusp if it corresponds to a diagram of Néron polygons.

X is regular except at supersingular points in characteristics p | N that admit non-trivial automor-
phisms.

(2.4) When p | N the mod p reduction XFp is singular and reducible over Z/pZ. Fortunately, we can
still describe the irreducible components.

LetN = pnMwith (p,M) = 1. All of the irreducible components are isomorphic to X0(M)Fp . We
can parametrize them with a,b ∈ Z>0 such that a+b = n. For such a pair, the associated component
Xa,b

Fp
appears with multiplictyφ(pc). All of the components intersect at each supersingular point ofX.

Every other point of Xa,b
Fp

corresponds to a diagram with kerφ locally isomorphic to µpa ×Z/pbMZ.

We also have an explicit description of the subscheme C of cusps of X. It is finite over Z with
irreducible components indexed by d ∈ Z>1 dividing N. The component C(d) parametrizes
diagrams of Néron polygons with kerφ ' µd × dZ/NZ. It has φ((d,N/d)) geometric points and is
isomorphic to Spec Z[µf]. The reduction of C(d) mod p lies in Xa,b

Fp
where a is vp(d).
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§3. HEEGNER DIAGRAMS

Before we move on to deformation theory, we need to address an important point that will show
up in Benjamin’s talks. Let H̆v be the maximal unramified extension of Hv and Ŏv be its ring of
integers. We will need to study points in X(Ŏv) which arise from Heegner points.

(3.1) Let x ∈ X(H) be a Heegner point. The action of Gal(H/Q) on x is free, so x : Spec(H) → XQ

is a closed immersion. For any closed point v ∈ Spec OH we can uniquely extend x to a point in
X(OH,v) by the valuative criterion of properness. Base changing, we see that x defines a unique
point x̆ ∈ X(Ŏv). We say that x̆ arises from x. The following proposition is needed to do intersection
theory on

Xv = X×Z Ov.

Proposition. — The point x̃v : Spec(Ov)→ Xv arising from a Heegner point x ∈ X(H) is in the relative
smooth locus over Ov.

Proof. Omitted. �

(3.2) Let x̆ ∈ X(H̆v) arise from a Heegner point x ∈ X(H). Since X does not represent the moduli
problem, it is not at all obvious that x̆ arises from a cyclic isogeny overW. But in fact:

Proposition. — x̆ is induced by a Heegner diagram over Ŏv.

Proof Sketch. Let φ : E → E ′ be the Heegner diagram over H inducing x. This diagram does not
admit good reduction overW in general.

(1) There exists a twist of E over H̆v with good reduction. It is given by an element

χ ∈ H1(Gal(H̆v), O×K )

(with the trivial Galois action). Choose such a χ.
(2) As φ is OK-equivariant, we can twist E ′ by χ as well. This way we get a Heegner diagram over

H̆v with good reduction. Furthermore, this diagram induces the same X(H̆sv) point as x.
(3) We can extend the twisted diagram toW using functoriality of Néron models.

�

§4. TOOLS OF DEFORMATION THEORY

(4.1) Let (R,m) be a local ring and A,B be abelian schemes over R. Write (•)n for reduction mod
mn+1 functor.

Proposition. — The map
HomR(A,B) −→ HomRn(An,Bn)

is injective.

Proof. Omitted. �

Writing k = R/m for the residue field, we thus have a filtration

. . . ↪→ HomR2(A2,B2) ↪→ HomR1(A1,B1) ↪→ Homk(A0,B0).

In our setting we are interested in the case R = Ŏv and A = E,B = E ′. We will want to compute
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(i) HomRn(An,Bn) for each n (or at least their sizes),
(ii) HomR(A,B).

The Serre–Tate theorem and Grothendieck’s existence theorem will help us deal with (i) and (ii)
respectively.

(4.2) Let S0 be a scheme such that p vanishes on S0. Let A0 be an abelian scheme over S0. We
will define an object A0[p

∞] called the p-divisible group attached to A. Let S0 ↪→ S be a closed
immersion whose associated ideal sheaf is nilpotent. Informally the Serre–Tate theorem says that

The deformations of abelian schemes and their homomorphisms from S0 to S
are completely controlled by their p-divisible groups and their homomorphisms.

For example, let A,B be abelian schemes over S with pullbacks A0,B0 to S0 and f0 : A0 → B0
be a homomorphism. One of the consequences of the Serre–Tate theorem is that f0 lifts to a
homomorphism f : A→ B if and only if the induced homomorphism f0[p

∞] : A0[p
∞]→ B0[p

∞] of
p-divisible groups lifts to a homomorphism f[p∞] : A[p∞]→ B[p∞] of p-divisible groups.

In our case S0 = Spec κ̆v,S = Spec Ŏv,n for some n ∈ Z>0 this will help us compute the groups
HomŎv,n

(En,E ′n).

(4.3) Going back to the setup of Paragraph 4.1, we know that

HomR(A,B) ⊂
⋂
n

HomRn(An,Bn) ' lim←−
n

HomRn(An,Bn).

But is this an equality?

Theorem (Grothendieck’s existence theorem). — Let R be a Noetherian ring, I an ideal of R. Write
(•)n for reduction mod In+1. Assume that R is complete and separated for the I-adic topology.

(1) Let X, Y be proper R-schemes. The natural map

HomR(X, Y) −→ lim←−HomRn(Xn, Yn)

is an isomorphism.
(2) Let {Xn} be a compatible system of proper schemes over Rn. Let Ln be a compatible system of line bundles

on Xn. There exists a pair (X, L ), unique up to unique isomorphism, lifting each (Xn, Ln).

So yes, we do get an equality. Also, since elliptic curves have canonical line bundles, a compatible
system of elliptic curves lifts to the projective limit.

Combining with the Serre–Tate theorem, we get:

Corollary. — Let (R,m) be a complete, Noetherian, local ring with residue field k = R/m of positive
characteristic. Let A,B be abelian schemes over R, then

HomR(A,B) = Homk(A0,B0)∩
⋂
n

HomRn(An[p
∞],Bn[p∞]).

§5. p-DIVISIBLE GROUPS

(5.1) Let S be a scheme and A be an abelian scheme over S. Let p be a prime. The system

A[p] ↪→ A[p2] ↪→ A[p3] ↪→ . . .

is the p-divisible group attached to A, denoted A[p∞]. Notice that:
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(i) For each n, the subgroup A[pn] is a finite, flat, commutative group scheme over S.
(ii) A[pn] = A[pn+1][pn].

More generally, a p-divisible group is an inductive system G = (Gn) of finite flat commutative
group schemes, such that Gn = Gn+1[p

n]. The height of G is the unique h ∈ Z>0 such that Gn is
of order pnh for all n. A homomorphism of p-divisible groups is just a compatible system of group
scheme homomorphisms.

Example. — Let g = dimA, then A[p∞] is a p-divisible group of height 2g.

(5.2) Let S be a scheme on which p is locally nilpotent. Let S0 ↪→ S be a closed subscheme defined by
a nilpotent sheaf of ideals. Let A(S) be the category of abelian schemes over S. Let Def(S,S0) be the
category of triples (A0,G, ε) where

(i) A0 is an abelian scheme over S0,
(ii) G is a p-divisible group over S,

(iii) ε : G0 → A0[p
∞] is an isomorphism of p-divisible groups over S0.

Theorem (Serre–Tate). — The functor

A(S) −→ Def(S,S0)

A 7−→ (A0,A[p∞], canonical)

is an equivalence of categories.

(5.3) The Serre–Tate theorem says at least three interesting things. The first one is essential surjectivity,
which allows us to reduce the problem of finding deformations of abelian schemes to the problem of
finding deformations of p-divisible groups, which is much more tractable. To explain the other two
we need a few lemmas. Throughout S0 ↪→ S is as in the Serre–Tate setup.

Lemma. — Let A,A ′ be abelian schemes over S, then

HomS(A,A ′) −→ HomS0(A0,A ′0)

is injective.

Lemma. — Let G,G ′ be p-divisible groups over S, then

HomS(G,G ′) −→ HomS0(G0,G ′0)

is injective.

Lemma. — Let A,A ′ be abelian schemes over S, then

HomS(A,A ′) −→ HomS(A[p∞],A ′[p∞])
is injective.

If A,A ′ are abelian schemes over S, by Serre–Tate the square

HomS(A,A ′) HomS(A[p∞],A ′[p∞])

HomS0(A0,A ′0) HomS0(A0[p
∞],A ′0[p∞])

is Cartesian. This tells us:

(1) which homomorphisms A[p∞]→ A ′[p∞] come from homomorphisms A→ A ′,
(2) which homomorphisms A0 → A ′0 lift to homomorphisms A→ A ′.
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(5.4) Let k be a field.

Theorem (Connected-étale exact sequence). — Let G be a finite, flat group scheme over k.

(1) There is a canonical short exact sequence

0 G0 G Gét 0

of group schemes. G0 is the identity component of G and Gét is finite, étale.
(2) If k is perfect, the induced map Gred → Gét is an isomorphism; in particular, the short exact sequence

splits canonically.

If G is a p-divisible group over k, the connected-étale exact sequences of Gn are compatible and
we get a short exact sequence

0 G0 G Gét 0

of p-divisible groups. A p-divisible group is connected/étale/reduced if each Gn satisfies the same
property. (Gred

n ) define a p-divisible subgroup of G and when k is perfect the short exact sequence
splits.

(5.5)

Example. — Let k be algebraically closed, E be an elliptic curve over k and p be a prime. Since k is
perfect,

E[p∞] ' E[p∞]0 × E[p∞]ét.
First, we examine the étale part.

(i) If k has characteristic different from p, then

E[pn] ' (p−nZ/Z)2

is a constant, étale group scheme. The p-divisible group Qp/Zp := (p−nZ/Z) is called the
constant p-divisible group. Hence E[p∞] ' (Qp/Zp)

2.
(ii) If E is ordinary, then

E[pn]ét ' p−nZ/Z

and E[p∞]ét ' Qp/Zp. This is a height 1 p-divisible group, so E[p∞]0 is a connected p-divisible
group of height 1.

(iii) If E is supersingular, then
E[pn]ét = 0,

so E[p∞] is a connected p-divisible group of height 2.

Our next goal is to understand the connected part.

§6. FORMAL LIE GROUPS

(6.1) Let R be a commutative ring. An (n-dimensional, commutative) formal Lie group G is a
suitable R-homomorphism

θG : RJT1, . . . , TnK −→ RJX1, . . . ,Xn, Y1, . . . ,YnK.

By suitable, I mean that if G(X, Y) = (Gi(X, Y)) where Gi is θG(Ti), then

(i) G(X, 0) = X,
(ii) G(X, Y) = G(Y,X),

(iii) G(X,G(Y,Z)) = G(G(X, Y),Z).
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Let F , G be formal Lie groups of dimensions n,m respecfively, and let F,G be their corresponding
families of power series. A homomorphism f : F → G is a family f = (f1, . . . , fm) of n-power series
in X1, . . . ,Xn with no constant terms, such that

f(F(X, Y)) = G(f(X), f(Y)).

If f,g ∈ HomR(F , G ) then we define

(f+ g)(T) = G(f(T),g(T)).

Defining multiplication to be composition in EndR(G ) we get a non-commutative ring structure,
and the canonical homomorphism Z→ EndR(G ) defines endomorphisms [n] for all n ∈ Z. We can
reinterpret these as homomorphisms

[n] : RJT1, . . . , TnK −→ RJT1, . . . , TnK.

Note that the linear term of [n](T) is nT .

(6.2) If [p] : G → G is finite, we say G is p-divisible. In that case,

F[pn] = Spec(RJT1, . . . , TnK/[pn]((T1, . . . , Tn)))

is a finite, flat, connected commutative group scheme over R and the system F[p∞] = (F[pn]) defines
a connected p-divisible group.

Theorem (Tate). — Let R be a complete, Noetherian, local ring with residue field of characteristic p > 0.
The functor F 7→ F[p∞] is an equivalence of categories between p-divisible formal Lie groups and connected
p-divisible groups over R.

Remark. — Using the formalism of sheaves for the fppf site we can actually identify p-divisible
formal Lie groups with connected p-divisible groups. This will be important later, because we
will need to study the deformations of p-divisible groups and we’d like to do that by studying
deformations of formal Lie groups.

The dimension of a p-divisible group G over R as in the theorem is the dimension of the formal
Lie group corresponding to G0.

Example (Continued). — For the rest of this section take k to be algebraically closed of characteristic
p > 0. The formal Lie group corresponding to E[p∞]0 is a 1-dimensional formal Lie group.

(6.3)

Lemma. — Let F , G be 1-dimensional formal Lie groups over k and f ∈ Homk(F , G ). Then

f(T) = a1T
ph + a2T

2ph + . . . , a1 6= 0

for some h ∈ Z>1 or f = 0. Such h, if it exists, is the height of f. The height of f = 0 is defined to be∞.

Now let G be a formal Lie group over k, then the height of G is the height of [p].

Theorem (Lazard). — The height is a complete invariant of formal Lie groups over k.

Theorem (Dieudonné–Lubin). — Let G be a formal Lie group of height h < ∞. Then Endk(G ) is
isomorphic to the maximal order in the central division algebra of invariant 1/h and rank h2 over Qp.
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§7. ORDINARY ELLIPTIC CURVES

(7.1) Let k be an algebraically closed field of characteristic p > 0. Let E0 be an ordinary elliptic curve
over k. We know that E0[p

∞]ét ' Qp/Zp. We also know that E0[p
∞]0 is a 1-dimensional formal Lie

group of height 1. This formal Lie group is actually isomorphic to µp∞ :

µp ↪→ µp2 ↪→ µp3 ↪→ . . .

(7.2) Let Speck ↪→ S be a closed immersion defined by a nilpotent ideal sheaf. Let E be a lift of E0 to
S and consider the connected-étale sequence

0 E[p∞]0 E[p∞] E[p∞]ét 0.

E[p∞]0 and E[p∞]ét are lifts of µk,p∞ and Qp/Zp
k

respectively. Both of these have unique lifts to S,
namely µS,p∞ and Qp/Zp

S
. Hence the deformations of E0 to S are in bijection with

Ext1(Qp/Zp
S

,µS,p∞).
In particular, they form a group, and the identity element, the Serre–Tate canonical lift, corresponds
to the deformation for which the exact sequence splits.

§8. SUPERSINGULAR ELLIPTIC CURVES

(8.1) We will need an additional piece of structure in the supersingular case. Let A be a ring and B
be an A-algebra, then a formal A-module of dimension 1 over B is a pair (G ,g) of

(i) a 1-dimensional formal Lie group G over B,
(ii) a homomorphism g : A→ EndB(G ) such that g(a) ′(0) = a.

If A is the ring of integers of a local field, and π is a uniformizer, then the height of (G ,g) is the
height of g(π).

(8.2) For the purposes of Gross-Zagier we will be in the following situation:

• x̆ ∈ X(Ŏv) comes from a Heegner point x ∈ X(H),
• p is a rational prime which is either split or ramified in K,
• so v comes from the unique prime w in OK dividing p,
• E is an elliptic curve for a Heegner diagram of x̆,
• E0 is the supersingular reduction of E.

Note that we have inclusions

OK ↪→ EndŎv
(E) ↪→ EndŎv

(E0) ↪→ Endk(E0) ↪→ Endk(E0[p
∞]).

Also, the endomorphism ring of any p-divisible group has a Zp-module structure, so we have a
map

φ : Ow ' OK ⊗Z Zp −→ Endk(E0[p
∞])

which makes (E0[p
∞],φ) into an Ow-module over k of height 1. Also note that E0[p

∞] is a Zp-
module of height 2.

(8.3) Write G = E0[p
∞] and R = Endk(G ). R is the maximal order in the quaternion division algebra

Q over Qp. If we treat G as a formal Ow-module:
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Proposition (Lubin–Tate). — There is a formal Ow-module Ğ over Ŏv lifting G . This lift is unique up to
isomorphism.

Furthermore, we have that
EndŎv

(Ğ ) = Ow.

(8.4) Now we will treat G as a formal Zp-module. We call Ğ the canonical lifting of G . For n ∈ Z>0
define

Rn = EndŎv/πn+1(Ğ );

in particular, R0 = R. By Paragraph 4.1, we have injections

. . . ↪→ R2 ↪→ R1 ↪→ R.

By Grothendieck’s existence theorem

Ow = EndŎv
(Ğ ) =

⋂
n∈Z>0

Rn

Proposition. — For n > 1
Rn = O + πnR.

Proof Idea. One can prove this by mapping Rn−1/Rn into the second formal module cohomology
groups. �

(8.5) We can give an explicit quaternionic description of Rn, which we will need for computations
later. By the Skolem–Noether theorem, there is some j ∈ Q∗/K∗w such that conjugation by j induces
the non-trivial σ ∈ Gal(Kw/Qp). We get a decomposition

Q = Kw ⊕ jKw = Q+ ⊕Q−.

Given b ∈ Qwrite b = b+ + b− for the decomposition of b into Q+ ⊕Q−.

Proposition. — For n > 0

Rn =
{
b ∈ B

∣∣∣Tr(b) ∈ Zp,N(b) ∈ Zp,N(b−) ≡ 0 mod p1−e+nf
}

= {b ∈ R|D ·N(b−) ≡ 0 mod p ·N(π)n} .

(8.6) Finally, we introduce the notion of quasi-canonical liftings, which we will need in Gross-Zagier.
Let

T = T Ğ = lim←−
n

Ğ [pn](H̆v)

be the Tate-module of Ğ . Let
V = VĞ = T ⊗Ow Kw.

The Zp-submodules T ′ of V such that T ′/T is finite give rise to

(i) a formal Zp-module Ğ ′ over Ŏ ′v, the ring of integers of the field H̆ ′vfixed by

Stab(T ′) ⊂ Gal(H̆v).

(ii) an isogeny
Ğ −→ Ğ ′

defined over Ŏ ′v.
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Now there are two options:

EndŎ ′v
(Ğ ′) =

{
Ow

Os := Zp + p
sOw for some s > 1.

In the first case Ğ ′ ' Ğ , so we get the canonical lift. In the second case we say Ğ ′ is a quasi-canonical
lift of level s.

(8.7) We finish with a few facts about quasi-canonical liftings.

Proposition. — (1) There is a quasi-canonical lift of every level s > 1.
(2) Let Ğ ′ be a quasi-canonical lift of level s. Then H̆ ′v is the abelian extension of Kw with norm group

O∗s ⊂ K∗w.
(3) Quasi-canonical lifts of level s are a Gal(H̆ ′v/H̆v)-torsor.
(4) If Ğ ′ is a quasi-canonical lifting, then Ğ and Ğ ′ are not isomorphic mod (π ′)2 (where π ′ is a uniformizer

of Ğ ′).
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