DEFORMATIONS OF ELLIPTIC CURVES

MICHAL MRUGALA

§1. NOTATION AND MOTIVATION

Recall the Heegner setup (cf. notation sheet). Our goal is to compute the local height pairings
<C/ TTTI d6>v

for non-archimedean places v of H. We will henceforth fix a non-archimedean place v.

Suppose a, b € Div’(X)(H, ). Recall from Leonardo’s talk that local heights may be computed by
solving an intersection problem: If .2, is a proper, regular model for Xy, over 0}, and a, b are lifts
of a,b to £, (one of which has zero intersection number with each irreducible component), then

(1) (a,b), =— (H : B) log q.
To carry out this computation we need to do two things:

(1) Find a proper, regular model for Xy, over 0.
(2) Compute the intersection products (¢ - T, d©).

For these purposes:

o In Section 2 we describe the integral model of X.

e In Section 3 we discuss lifting Heegner diagrams to &y, the maximal unramified extension
of O,,.

o In Section 4 we give an informal statement of the Serre-Tate theorem and a formal statement
of Grothendieck’s existence theorem.

o In Section 5 we introduce p-divisible groups and give a formal statement of the Serre-Tate
theorem.

e In Section 6 we introduce formal Lie groups to analyse the connected components of p-
divisible groups attached to elliptic curves.

o In Section 7 we describe the deformation theory of ordinary elliptic curves. In particular, we
define the Serre-Tate canonical lifts.

o In Section 8 we describe the deformation theory of supersingular elliptic curves. In particular,
we define Gross’ quasi-canonical lifts.

§2. INTEGRAL MODEL OF X

(2.1) Recall that Y(N) is a moduli space parametrizing cyclic isogenies of degree N between elliptic
curves. More specifically, for any Q-scheme S

Yo(N)(S) =~ {d) :E—FE

E, E’ elliptic curves over S / ~
¢ a cyclic isogeny of degree N

A cyclic isogeny is an isogeny ¢ : E — E’ such that
1
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(i) ker ¢ meets every irreducible component of every geometric fiber of E,
(ii) locally on § there is a point P such that

ker¢ = Z[jP}
j=1

as Cartier divisors on E.

(2.2) X = Xp(N) is defined by relaxing the condition on E, E’, we instead ask that they are generalized
elliptic curves. We will not define them here; for our purposes it suffices to have their description
over algebraically closed fields. In that case, there are two types of generalized elliptic curves:

(1) Elliptic curves.
(2) Néron polygons Cr: Let n € Z>. Define the Cy, to be the scheme obtained from P} x Z/nZ
by gluing ({00}, 1) with ({0},i4 1) for all i € Z/nZ.

This moduli problem is not representable, we instead define the integral model of X to be the “best
approximation” to a representing object, called the coarse moduli scheme. This scheme exists and
parametrizes the objects we care about over algebraically closed fields. I will abuse notation and
write X for this integral model.

(2.3) Xis a proper, flat curve over Z, smooth over Z[1/N]. To say more about the regularity properties
of X over Z we need the notion of automorphisms of geometric points of X. Let x be such a point of
X corresponding to an isogeny ¢ : E — E’ over an algebraically closed field k. The automorphism
group Auty (x) is the subgroup of (f,f’) € Auty(E) x Autk(E’) such that

AN Y

I Kz
E—Y

commutes. Say x has non-trivial automorphisms if Auty (x) # (+1). We also need to distinguish
three types of field valued points of X:

(i) a point is ordinary if it corresponds to ¢ : E — E’ with E, E/ ordinary,
(ii) a point is supersingular if it corresponds to ¢ : E — E’ with E, E/ supersingular,
(iif) a point is a cusp if it corresponds to a diagram of Néron polygons.

X is regular except at supersingular points in characteristics p | N that admit non-trivial automor-
phisms.

(2.4) When p | N the mod p reduction X, is singular and reducible over Z/pZ. Fortunately, we can
still describe the irreducible components.

Let N = p™M with (p, M) = 1. All of the irreducible components are isomorphic to XO(M)]FP. We
can parametrize them with a, b € Z> such that a +b = n. For such a pair, the associated component
X]%;b appears with multiplicty ¢ (p€). All of the components intersect at each supersingular point of X.

Every other point of X;;b corresponds to a diagram with ker ¢ locally isomorphic to ppa x Z/p°?MZ.

We also have an explicit description of the subscheme C of cusps of X. It is finite over Z with
irreducible components indexed by d € Z>; dividing N. The component C(d) parametrizes
diagrams of Néron polygons with ker ¢ ~ pgq x dZ/NZ. It has ¢((d, N/d)) geometric points and is
isomorphic to Spec Z[1.¢]. The reduction of C(d) mod p lies in X;l'gb where a is vy (d).
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§3. HEEGNER DIAGRAMS

Before we move on to deformation theory, we need to address an important point that will show
up in Benjamin’s talks. Let Fl\, be the maximal unramified extension of H, and &, be its ring of
integers. We will need to study points in X(&,) which arise from Heegner points.

(3.1) Let x € X(H) be a Heegner point. The action of Gal(H/Q) on x is free, so x : Spec(H) — Xg
is a closed immersion. For any closed point v € Spec &4 we can uniquely extend x to a point in
X(On,v) by the valuative criterion of properness. Base changing, we see that x defines a unique
point % € X(&,). We say that % arises from x. The following proposition is needed to do intersection
theory on

Xv =X Xz ﬁv.
Proposition. — The point X,, : Spec(0\,) — X, arising from a Heegner point x € X(H) is in the relative
smooth locus over O,,.
Proof. Omitted. O

(3.2) Let x € X(H,) arise from a Heegner point x € X(H). Since X does not represent the moduli
problem, it is not at all obvious that X arises from a cyclic isogeny over W. But in fact:

Proposition. — X is induced by a Heegner diagram over 0.

Proof Sketch. Let ¢ : E — E’ be the Heegner diagram over H inducing x. This diagram does not
admit good reduction over W in general.

(1) There exists a twist of E over H,, with good reduction. It is given by an element
x € H!(Gal(H,), &%)

(with the trivial Galois action). Choose such a x.

(2) As ¢ is Ox-equivariant, we can twist E’ by x as well. This way we get a Heegner diagram over
H, with good reduction. Furthermore, this diagram induces the same X(l:lf,) point as x.

(3) We can extend the twisted diagram to W using functoriality of Néron models.

§4. TOOLS OF DEFORMATION THEORY

(4.1) Let (R, m) be a local ring and A, B be abelian schemes over R. Write (e),, for reduction mod
m™ ! functor.

Proposition. — The map
Homg(A,B) — Homg, (An,Bn)
is injective.

Proof. Omitted. O

Writing k = R/m for the residue field, we thus have a filtration

A HomRz(Az, Bz) — Hole (Al, Bl) — HOl’nk(Ao, Bo).

In our setting we are interested in the case R = O, and A = E,B = E’. We will want to compute
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(i) Hompg, (An,Bn) for each n (or at least their sizes),
(i) Homg(A, B).

The Serre-Tate theorem and Grothendieck’s existence theorem will help us deal with (i) and (ii)
respectively.

(4.2) Let Sy be a scheme such that p vanishes on Sy. Let Ag be an abelian scheme over Sy. We
will define an object Ag[p*°] called the p-divisible group attached to A. Let Sy — S be a closed
immersion whose associated ideal sheaf is nilpotent. Informally the Serre-Tate theorem says that

The deformations of abelian schemes and their homomorphisms from Sy to S
are completely controlled by their p-divisible groups and their homomorphisms.

For example, let A, B be abelian schemes over S with pullbacks Ag, By to Sp and fy : Ag — Bop
be a homomorphism. One of the consequences of the Serre-Tate theorem is that fj lifts to a
homomorphism f: A — B if and only if the induced homomorphism fo[p>] : Ag[p>] — Bylp™] of
p-divisible groups lifts to a homomorphism f[p*>] : A[p*] — B[p*°] of p-divisible groups.

In our case Sy = Spec &y, S = Spec 0, , for some n € Z this will help us compute the groups
Hom, (En, EL).

(4.3) Going back to the setup of Paragraph 4.1, we know that
Homg (A, B) C (|Homg,, (An,Bn) =~ lim Homg,, (An, By).
n n

But is this an equality?

Theorem (Grothendieck’s existence theorem). — Let R be a Noetherian ring, 1 an ideal of R. Write
() for reduction mod I™*1. Assume that R is complete and separated for the I-adic topology.

(1) Let X,Y be proper R-schemes. The natural map
Homg (X,Y) — Li&lHomRn(Xn,Yn)

is an isomorphism.
(2) Let {Xn} be a compatible system of proper schemes over Ry. Let £, be a compatible system of line bundles
on Xn. There exists a pair (X, L), unique up to unique isomorphism, lifting each (X, Zn).

So yes, we do get an equality. Also, since elliptic curves have canonical line bundles, a compatible
system of elliptic curves lifts to the projective limit.
Combining with the Serre-Tate theorem, we get:

Corollary. — Let (R, m) be a complete, Noetherian, local ring with residue field k = R/m of positive
characteristic. Let A, B be abelian schemes over R, then

Homg (A, B) = Homy(Ag, Bo) N[ | Homg,, (An[p™], Bn[p™]).

§5. p-DIVISIBLE GROUPS

(5.1) Let S be a scheme and A be an abelian scheme over S. Let p be a prime. The system
Alpl = Alp?] — Alp®l — ...
is the p-divisible group attached to A, denoted A[p®]. Notice that:
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(i) For each n, the subgroup A[p™] is a finite, flat, commutative group scheme over S.
(i) Alp™) = Alp™1fpm.

More generally, a p-divisible group is an inductive system G = (Gn) of finite flat commutative
group schemes, such that Gy, = G, 11[p™]. The height of G is the unique h € Z>( such that G, is
of order p™" for all n. A homomorphism of p-divisible groups is just a compatible system of group
scheme homomorphisms.

Example. — Let g = dim A, then A[p®] is a p-divisible group of height 2g.

(5.2) Let S be a scheme on which p is locally nilpotent. Let Sg < S be a closed subscheme defined by
a nilpotent sheaf of ideals. Let A(S) be the category of abelian schemes over S. Let Def(S, Sg) be the
category of triples (Ag, G, ¢) where

(i) Agis an abelian scheme over Sy,
(ii) G is a p-divisible group over S,
(iii) €: Gp — Aglp™] is an isomorphism of p-divisible groups over Sy.

Theorem (Serre-Tate). — The functor
A(S) — Def(S, Sp)
A — (Ag, Alp™], canonical)

is an equivalence of categories.

(5.3) The Serre-Tate theorem says at least three interesting things. The first one is essential surjectivity,
which allows us to reduce the problem of finding deformations of abelian schemes to the problem of
finding deformations of p-divisible groups, which is much more tractable. To explain the other two
we need a few lemmas. Throughout Sg — S is as in the Serre-Tate setup.

Lemma. — Let A, A’ be abelian schemes over S, then

Homg(A,A’) — Homg, (Ag, Ag)
is injective.
Lemma. — Let G, G’ be p-divisible groups over S, then

Homs (G, G’) — Homyg, (Go, Gg)
is injective.
Lemma. — Let A, A’ be abelian schemes over S, then

Homg (A, A’) — Homg (A[p™], A'[p™])

is injective.

If A, A’ are abelian schemes over S, by Serre-Tate the square

Homg (A, A’) ——— Homg(A[p*], A’[p™])

l [

Homg, (Ao, Ag) —— Homg, (Aolp™], Ajlp™])

is Cartesian. This tells us:

(1) which homomorphisms A[p>] — A’[p*] come from homomorphisms A — A’,
(2) which homomorphisms Ay — A/ lift to homomorphisms A — A’.
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(5.4) Let k be a field.

Theorem (Connected-étale exact sequence). — Let G be a finite, flat group scheme over k.

(1) There is a canonical short exact sequence

0 GY G e 0

of group schemes. G is the identity component of G and G* is finite, étale.
(2) If k is perfect, the induced map G™ — G® is an isomorphism; in particular, the short exact sequence
splits canonically.

If G is a p-divisible group over k, the connected-étale exact sequences of G, are compatible and
we get a short exact sequence

0 G° G G 0
of p-divisible groups. A p-divisible group is connected/étale/reduced if each G, satisfies the same

property. (G*4) define a p-divisible subgroup of G and when k is perfect the short exact sequence
splits.

(5.5)

Example. — Let k be algebraically closed, E be an elliptic curve over k and p be a prime. Since k is
perfect,
E[pOO] ~ E[pOO]O > E[pOO}ét.

First, we examine the étale part.

(i) If k has characteristic different from p, then
Elp" ~ (p "Z/2)*

is a constant, étale group scheme. The p-divisible group Qp/Z,, = (p~ " Z/Z) is called the
constant p-divisible group. Hence E[p*°] ~ (Q},/Z, )2.
(i) If E is ordinary, then
E[pn]ét ~ p—nz/z
and E[p®]® ~ Q,,/Z,,. This is a height 1 p-divisible group, so E[p>]°is a connected p-divisible
group of height 1.
(iii) If E is supersingular, then
E[pn]ét — 0,
so E[p®] is a connected p-divisible group of height 2.

Our next goal is to understand the connected part.
§6. FORMAL LIE GROUPS

(6.1) Let R be a commutative ring. An (n-dimensional, commutative) formal Lie group ¥ is a
suitable R-homomorphism

0 :R[Ty, ..., Tn] — R[Xy, .-, Xn, Y1,--., Yu]-
By suitable, I mean that if G(X,Y) = (Gi(X,Y)) where G; is 0 (T;), then

() G(X,0) =X,
(i) G(X,Y)=G(Y,X),
(iii) G(X,G(Y,Z)) = G(G(X,Y),Z).
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Let .#,9 be formal Lie groups of dimensions n, m respecfively, and let F, G be their corresponding
families of power series. A homomorphism f : % — ¢ is a family f = (fy,..., fm) of n-power series
in X1, ..., X with no constant terms, such that

f(F(X,Y)) = G(f(X), f(Y)).
If f,g € Homg(.#,%¥) then we define
(f+g)(T) = G(f(T), g(T)).

Defining multiplication to be composition in Endg (¥) we get a non-commutative ring structure,
and the canonical homomorphism Z — Endg (%) defines endomorphisms [n] for all n € Z. We can
reinterpret these as homomorphisms

ml:R[Ty,..., Tn] — R[Ty, ..., Tn]-

Note that the linear term of n](T) is nT.

(6.2) If [p] : 4 — ¥ is finite, we say ¥ is p-divisible. In that case,
Flp™] = Spec(R[Ty, ..., Tu]/p™1((Ti, ..., Tn)))

is a finite, flat, connected commutative group scheme over R and the system F[p™] = (F[p™]) defines
a connected p-divisible group.

Theorem (Tate). — Let R be a complete, Noetherian, local ring with residue field of characteristic p > 0.
The functor F — F[p™] is an equivalence of categories between p-divisible formal Lie groups and connected
p-divisible groups over R.

Remark. — Using the formalism of sheaves for the fppf site we can actually identify p-divisible
formal Lie groups with connected p-divisible groups. This will be important later, because we
will need to study the deformations of p-divisible groups and we’d like to do that by studying
deformations of formal Lie groups.

The dimension of a p-divisible group G over R as in the theorem is the dimension of the formal
Lie group corresponding to G.

Example (Continued). — For the rest of this section take k to be algebraically closed of characteristic
p > 0. The formal Lie group corresponding to E[p>°]° is a 1-dimensional formal Lie group.

(6.3)
Lemma. — Let .#,% be 1-dimensional formal Lie groups over k and f € Homy (F#,¥). Then
f(T) = ;TP + T +...,  a £0

for some h € Z>1 or f = 0. Such h, if it exists, is the height of f. The height of f = 0 is defined to be oo.

Now let & be a formal Lie group over k, then the height of ¢ is the height of [p].
Theorem (Lazard). — The height is a complete invariant of formal Lie groups over k.

Theorem (Dieudonné-Lubin). — Let ¢ be a formal Lie group of height h < oco. Then Endy(¥) is
isomorphic to the maximal order in the central division algebra of invariant 1/h and rank h? over Q.
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§7. ORDINARY ELLIPTIC CURVES

(7.1) Let k be an algebraically closed field of characteristic p > 0. Let Eg be an ordinary elliptic curve
over k. We know that Ey[p>]¢t ~ Qp/Zy. We also know that Eg [p>10 is a 1-dimensional formal Lie
group of height 1. This formal Lie group is actually isomorphic to pp:

Hp < Hp2 < Bp3 ..

(7.2) Let Speck < S be a closed immersion defined by a nilpotent ideal sheaf. Let E be a lift of Ej to
S and consider the connected-étale sequence

0 —— E[p*]® —— Ep>®] —— E[p>®]¢* —— 0.

E[p*]? and E[p*]¢" are lifts of py pe and Qp/ Zy, respectively. Both of these have unique lifts to S,

namely ps oo and Qp /Zy . Hence the deformations of Ej to S are in bijection with

Eth(Qp/ZpSr US,p‘”)-

In particular, they form a group, and the identity element, the Serre-Tate canonical lift, corresponds
to the deformation for which the exact sequence splits.

§8. SUPERSINGULAR ELLIPTIC CURVES

(8.1) We will need an additional piece of structure in the supersingular case. Let A be a ring and B
be an A-algebra, then a formal A-module of dimension 1 over B is a pair (¢, g) of

(i) a 1-dimensional formal Lie group ¢ over B,
(ii) a homomorphism g: A — Endg(¥) such that g(a)’(0) = a.

If A is the ring of integers of a local field, and 7 is a uniformizer, then the height of (¥, g) is the
height of g(7).

(8.2) For the purposes of Gross-Zagier we will be in the following situation:

X € X(&,) comes from a Heegner point x € X(H),

p is a rational prime which is either split or ramified in K,
so v comes from the unique prime w in 0k dividing p,

E is an elliptic curve for a Heegner diagram of X,

Ey is the supersingular reduction of E.

Note that we have inclusions
ﬁ]( — Endﬁv (E) — End(;v(Eo) — Endk(EO) — Endk(Eo[poo]).

Also, the endomorphism ring of any p-divisible group has a Z,-module structure, so we have a
map

¢ : Ow ~ Ox @z Zp — Endy (Eg[p™])
which makes (Eo[p®], ¢) into an &,,-module over k of height 1. Also note that Eo[p™] is a Z,-
module of height 2.

(8.3) Write ¢ = Ey[p*>°] and R = Endy (¥). R is the maximal order in the quaternion division algebra
Q over Q. If we treat & as a formal &,,-module:
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Proposition (Lubin-Tate). — There is a formal O,-module & over O, lifting 4. This lift is unique up to
isomorphism.

Furthermore, we have that
Endﬁv ({?’) = ﬁw.

(8.4) Now we will treat ¢ as a formal Z,,-module. We call ¢ the canonical lifting of 4. Forn € Z,
define

Rn = Endﬁv/ﬂnﬂ (9);
in particular, Ry = R. By Paragraph 4.1, we have injections
... >Ry = Ry — R.
By Grothendieck’s existence theorem
Ow=End; (9)= () Rn
neZsg

Proposition. — Forn > 1
Rn = O+ n"R.

Proof Idea. One can prove this by mapping R,,_1/Ry, into the second formal module cohomology
groups. O

(8.5) We can give an explicit quaternionic description of Ry, which we will need for computations
later. By the Skolem-Noether theorem, there is some j € Q*/Kj,, such that conjugation by j induces
the non-trivial o € Gal(K,,/Qp ). We get a decomposition

Q=KuwdjiKnw=0Q+4Q_.
Given b € Q write b = b + b_ for the decomposition of b into Q+ ® Q_.
Proposition. — Forn >0
Rn = {b € B[Tr(b) € Z;, N(b) € Zp, N(b-) = 0 mod p! "1}
={beRD-N(b_) =0mod p-N(m)"}.

(8.6) Finally, we introduce the notion of quasi-canonical liftings, which we will need in Gross-Zagier.
Let

T=TY =1im¥%[p"](H,)
o Y
be the Tate-module of ¢. Let

V=VY=Ta,, Kn.
The Z,,-submodules T’ of V such that T'/T is finite give rise to

(i) a formal Z,-module ¥’ over &), the ring of integers of the field H/ fixed by
Stab(T’) c Gal(H,).
(ii) anisogeny
g —9'

defined over 0.
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Now there are two options:

End; (¢') = {ﬁw

Os =2y +p°0,, forsomes > 1.

In the first case ¥’ ~ ¢, so we get the canonical lift. In the second case we say 4" is a quasi-canonical
lift of level s.

(8.7) We finish with a few facts about quasi-canonical liftings.

Proposition. — (1) There is a quasi-canonical lift of every level s > 1.

(2) Let 9" be a quasi-canonical lift of level s. Then V!, is the abelian extension of K, with norm group
oy C K,

(3) Quasi-canonical lifts of level s are a Gal(FL,,/F,,)-torsor.

(4) If<4" is a quasi-canonical lifting, then & and 4’ are not isomorphic mod (7t')? (where 7’ is a uniformizer

of 9').
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