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1 INTRODUCTION

Let K be a field together with a setMK of absolute values satisfying the product formula
with weights nv. In previous talks we have seen global heights in various forms:

• For a point of projective space:

x = (x0, ..., xn) ∈ Pn(K) → h(x) =
1

[L : K]

∑
w∈ML

nw max
i

log |xi|w,

where L is any finite extension of K over which x is defined,ML is the set of absolute
values on L extending those ofMk and

nw =
[Lw : Kv]

[L : K]
;
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• more generally for a morphism f : V → Pn, h ◦ f is a height. When V is projective we
have a map

Pic(V) → RV(K)/O(1);

• for abelian varieties we have a canonical height, the Néron-Tate height, associated to
each line bundle, which satisfies all the nice properties that general global heights
only satisfy up to a bounded function.

In this talk we will try to answer the following question: can we split global heights into
a sum of local contributions λv from each v? The formula for the height on Pn suggests
that we could choose something that looks like maxi log |xi|v. However, this expression is
not even well defined (while the sum was well defined thanks to the product formula). To
remedy this, we have to choose some meromorphic section of O(1) (because the standard
height on Pn is associated with O(1)), for example x0, and use instead

max
i

log |xi|v − log |x0|v.

This is well defined, but it depends on the chosen section, and it is not defined where x0 = 0.
This is no coincidence: local heights will not be associated to divisor classes (line bundles),
like in the global case, but to (Cartier) divisors.
The structure of the talk will be as follows:

1. Construction of local heights, and of canonical local heights for abelian varieties.

2. Connection with global heights.

3. The special case of curves. On a regular curve C, a divisor can be identified with
a cycle of closed points. In particular, one might imagine to be able to construct a
pairing ⟨−,−⟩ on pairs of divisors (with some assumptions) such that for points x,y
we get ⟨x,y⟩ = hy(x). This will be the case, both globally and locally, and moreover
we will be able to get a canonical pairing. This pairing will be computable using
intersection theory.

Notation: If X is a scheme, x : Spec F → X is an F-point for some field F, U is a
neighbourhood of x in X, then we get a map x∗ : O(U) → F, and for ϕ ∈ O(U) we denote its
image by ϕ(x) ∈ F.

2 LOCAL HEIGHTS

In this section we follow [Ser97, Chapter 6]. Let K be a field complete with respect to an
absolute value |− |v. It is convenient to assume K to be algebraically closed. The reader can
consult instead [Lan83, Chapter 10] for a more general (and technical) treatment.
Put

v(−) = − log |− |v.

Consider a quasi-projective variety V over K.
The set of K-points V(K) comes equipped with a topology induced by that of K, called the
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K-topology: it is the coarser topology such that, for any Zariski open U and for any f ∈ O(U),
the function |f|v : U(K) → R is continuous ([Lan83, Chapter 10]).

DEFINITION 2.1. A subset B ⊂ V(K) is bounded if it satisfies the following condition.
If V = Spec(A) is affine, B is bounded if f(B) is bounded in K for all f ∈ A (this can be
checked on a finite number of generators of A).
In the general case, B is bounded if there exists a finite open affine cover V =

⋃
Ui and B is

the union of subsets Bi ⊂ Ui(K) which are bounded in Ui. One can easily see that the two
definitions are compatible.
Warning: This is not equivalent to asking the same condition for all open covers Ui and
decompositions Bi.

REMARK 2.2. 1. When K is locally compact a set B is bounded if and only if the closure
B is compact for the K-topology.

2. Projective space is bounded: it is the union of the subsets

Bi = {x ∈ Pn(K) | |xi|v ⩾ |xj|v ∀j} ⊂ {xi ̸= 0},

which are all bounded by 1. More generally, any projective variety is bounded.

3. If V f−→W is a morphism, the image of any bounded set is bounded.

DEFINITION 2.3. A real valued function on V(K) is strongly continuous if it is continuous
(for the K-topology) and preserves bounded subsets.

REMARK 2.4. 1. When K is locally compact this is equivalent to being continuous.

2. When V = SpecA is affine, any f ∈ A is strongly continuous (by definition of bounded
set).

3. In what follows we will work with projective varieties: in this case the second condi-
tion is equivalent to being bounded on all V(K).

DEFINITION 2.5 (LOCAL HEIGHT ) . Let D be a Cartier divisor on V . A local height asso-
ciated to D is a real valued function

λ : V(K) − SuppD→ R

satisfying the following condition: if U is an affine open of V where D = (ϕ) is principal,
with ϕ ∈ K(V), then the function

x 7→ λ(x) − v(ϕ(x))

defined on U(K) − SuppD extends to a strongly continuous function on U(K). If λ exists it
is unique up to a strongly continuous function.

EXAMPLE 2.6. On Pn, with D the hyperplane x0 = 0 (with local equation x0/xi where
xi ̸= 0) we can put

λ(x) = v(x0) − inf
0⩽i⩽n

v(xi) = max
i

log |xi|v − log |x0|v
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REMARK 2.7. 1. If D = (ϕ) is a principal divisor, we may take λD(x) = v(ϕ(x)).

2. λD1
+ λD2

is a local height for D1 +D2.

3. If V f−→ W is a morphism, C = f∗D, then λC = λD ◦ f is a local height for C. This
follows from the definition of local height, the fact that any local equation of D pulls
back to a local equation of C, and from 2.4(2).

COROLLARY 2.8. Local heights exist for quasi-projective varieties. Using the properties
of the remark one reduces to the cases of the example.

3 NÉRON ’S THEOREM

As before K is an algebraically closed field complete with respect an absolute value |− |v.

THEOREM 3.1. To all pairs (A,D), where A is an abelian variety over K andD is a divisor
on A, there is an associated local height

λD : A(K) − SuppD→ R,

which is defined up to a constant function, satisfying the following properties (all up to
constants).

1. If D = (ϕ) is principal, then λD(x) = v(ϕ(x)).

2. λD1
+ λD2

= λD1+D2
.

3. If π : A→ B is a morphism (not necessarily such that 0 7→ 0), and if π∗D is defined,
then λπ∗D = λD ◦ π.

For the proof we will use the following lemma.

LEMMA 3.2. Let S be a set, π : S → S a map, and E the Banach space of bounded real
valued functions on S, with the sup-norm. Let A : E→ E be the operator given by f 7→ f ◦ π.
Then the operator

Id −
1

λ
A

is invertible for all λ > 1, with inverse given by the formula

f 7→
∞∑
0

1

λn
An.

PROOF . We may assume that the divisor class of D is either symmetric or antisymmetric.
Indeed, the divisor group is generated by divisors which are either principal, symmetric or
antisymmetric. Property (1) already defines λ for principal divisors, and (2) implies that we
may restrict to a generating subset of the group.
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Under the map x 7→ 2x on A, by the formula for pullback of line bundles by multiplication
maps (see for example [Mum70, I.6, Corollary 3]) we find

[2]∗D = rD+ (ϕ), r = 4 or r = 2,

where r is either 2 or 4 and ϕ is a rational function. Let µ be any local height associated to
D, then we have

µ(2x) = rµ(x) + v(ϕ(x)) + ε(x),

where ε is a strongly continuous (and thus bounded) function on A(K). From Lemma 3.2
we find a bounded function η such that ε = η(2x) − rη(x), and we put

λ = µ− η.

This yields
(∗) rλ(2x) = rλ(x) + v(ϕ(x)).

This local height satisfies the required conditions: (∗) has to be satisfied by our required
heights. Moreover, we have the following fact:

LEMMA 3.3. For anyω ∈ R, the only bounded function f : A(K) → R satisfying

f(2x) = rf(x) +ω

is the constant function f = ω/(1− r).

If two local heights satisfy (∗), then they are equal by the case ω = 0 of the lemma. The
indeterminacy up to a constant is due to the non-canonical choice of ϕ: two functions
ϕ,ψ ∈ K(V) define the same principal divisor if and only if they differ by a constant factor
α ∈ K. However, two heights satisfying (∗) for different choices ofϕwill differ by a constant
v(α) by the lemma. ■

REMARK 3.4. The observation that the "up to a constant" part of the theorem is actually
up to a constant v(α) is important when considering all the absolute values of K together:
by the product formula we have v(α) = 0 for almost all v, and when taking sums over all v
these contributions cancel out allowing for canonical global heights.

4 RELATION WITH GLOBAL HEIGHTS

In this section we sketch some of the ideas in [Lan83, Chapter 10 and 11] for connecting the
local heights developed above with global heights.
Let K be a field together with a set of absolute valuesMK satisfying the product formula
with weights nv. Let V be a projective variety over K and D be a Cartier divisor on V ; we
know that there exists a notion of global height hD associated to D, and we would like to
have a formula

hD(x) =
1

[L : K]

∑
w∈ML

nwλD,w(x)

where the λD,w are local heights associated to D, and L is a finite extension of K over which
x is defined. There are two obstructions to such a formula.
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1. If we just choose any local height for each place independently, there is no guarantee
that the sum will be well defined, i.e., given a point x, it might happen that λD,w(x) ̸= 0
for infinitely many v. This can be circumvented by constructing the local heights all
together, as functions (called Weil functions) of the form

λ :
(
V(K) − Supp(D)

)
×MK → R

whereMK is the set of absolute values onK extending those ofMK. The constructions
in the sections above generalize to this functions, with the core difference that the
notion of a real constant is replaced by that of anMK-constant, i.e., a function

MK → R

which is zero for all but finitely many v ∈ MK. A Weil function has an associated
global height

hλ(x) =
1

[L : K]

∑
w∈ML

nwλw(x).

2. The global height is defined over all V(K), but the local heights only outside Supp(D).
The product formula allows to extend the sum on Supp(D). The idea is that if
ϕ ∈ K(V) then the Weil function associated to (ϕ) given by

(x, v) 7→ v(ϕ(x))

has global height zero by the product formula. Therefore we can move a divisor D
with a ϕwithout changing the height.

ABELIAN VARIETIES . Let A be an abelian variety, and D a Cartier divisor. [Lan83,
Theorem 11.1.1] generalizes Theorem 3.1, giving a canonical Weil function defined up to
anMK-constant and an associated global height hλ, which we can normalize by requiring
hλ(0) = 0. Let h̃c denote the Néron-Tate height associated to the class c = Cl(D). Then
we have h̃c = hλ, because the Néron-Tate height is uniquely determined by its properties,
which are satisfied by hλ.

5 THE CASE OF CURVES

We let K be as in the previous section. Let C be a complete, regular, geometrically irreducible
curve over K, and J = Pic0(C) its Jacobian.
For more details we refer to [BG06, Chapter 9.4] and [Gro86]. As Jacobians are self-dual,
there is a class p ∈ Pic(J× J), called the Poincaré class, such that for all a ∈ Pic0(J) ∼= Jwe
have p|J×{a}

∼= a and p|{0}×J
∼= 0. Furthermore, p is invariant under the automorphism of

J× J that swaps the two factors1.

1This follows since p = m∗θ− p∗1θ− p
∗
2θ, where θ is the theta divisor on J and m,p1,p2 : J× J → J are

respectively the multiplication and the two projections.
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COROLLARY 5.1. The Néron-Tate height of p defines a symmetric bilinear form

h̃p : J(K)× J(K) → R

such that h̃p(a,b) = h̃b(a).

Néron in [Nér65] showed that this pairing can be decomposed as a sum of canonical local
pairing. However, as with local heights, these local pairing will not be defined on divisor
classes (e.g. on J) but only on divisors (of degree zero).

We will now decribe this pairings, following [Gro86]. Let K be a field with an absolute
value |− |v, which makes K locally compact.
Let ϕ ∈ K(C) be a function and a =

∑
mx(x) a divisor of degree zero on C, such that (ϕ)

and a have disjoint support. We put

ϕ(a) :=
∏

ϕ(x)mx .

As a has degree zero, this only depends on the divisor (ϕ).

PROPOSITION 5.2. For each v there exists a unique bilinear pairing ⟨−,−⟩v, defined on
pairs (a,b) degree-zero divisors on C which are propetly intersecting (i.e., with disjoint
support, as C is a curve), and such that a is supported on the K-points of C, satisfying the
following properties:

1. ⟨a, (ϕ)⟩ = − log |ϕ(a)|v.

2. Fix x0 ∈ C(K) − Supp(a), then the map

C(K) − Supp(a) → R x 7→ ⟨a, (x) − (x0)⟩v

is strongly continuous.

3. ⟨a,b⟩ = ⟨b,a⟩ when also b has support in C(K).

Moreover, we can extend the pairing to any pair (a,b) of properly intersecting divisors of
degree zero in the following way: if H is a finite extension of K over which a is pointwise
rational, then we put

⟨a,b⟩ = 1

[H : K]
⟨a,b⟩H,

where the second term is the unique pairing for the curve CH obtained by base change to H.

PROOF . For uniqueness (see [Gro86, §3]), notice that the difference of two such pairings
descends to Pic0(C) = J by property (1), and thus we would get a pairing

J(K)× J(K) → R

which is continuous and bounded in each variable when the other is fixed. This must be
trivial as R contains no non-trivial compact subgroups.
One can show existence in the following way: take an embedding j : C ↪−→ J (by choosing a
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point x0 ∈ C). Given a degree-zero divisor b on C, take a degree-zero divisor D on J such
that b = j∗D+ (ϕ). Then the assignment

P 7→ λD,v(j(P)) + v ◦ϕ(x)

gives a Weil function which is well defined up to a constant. The key observation is that
this constant gets cancelled out if we use degree-zero divisors instead of a point P, thanks
to remark 3.4. For details on this approach we refer to [Lan83, Chapter 11.3]. We will follow
instead another approach, following [Gro86], which gives explicit formulas in terms of
intersection numbers. This construction will be carried out (at least in the non-Archimedean
case) in the next section. ■

6 COMPUTATION THROUGH INTERSECTION MULTIPLICITIES

In this section we will sketch the construction of the pairing of Proposition 5.2 for non-
Archimedean places, following [Gro86]. This proves existence and provides a way to
compute the pairing, which will be used in the following talks.
Let K be a locally compact field with respect to an absolute value |− |v, Ov is its valuation
ring, k(v) is the residue field.
Let C be a complete, regular, geometrically irreducible curve over K, with a regular and
proper model C over Ov. We will define an intersection product (− · −) for properly
intersecting divisors on C. Given V ,W integral close subschemes of C of codimension 1 that
intersect properly, their fibre product V ∩W = V ×CW is a zero-cycle

∑
mp(p), with

mp = len
(
OC,p/(ϕ,ψ)

)
and ϕ,ψ are local equations of V ,W around p.
We define (V ·W) as the degree

∑
mp[k(p) : k(v)] (notice that a closed point of C must be

in the special fibre, which is a scheme over k(v), the residue field of Ov). This pairing can be
extended by linearity to properly intersecting divisors, and is clearly symmetric.
Now let (a,b) be a pair as in the statement of 5.2. Let A be an extension of a to C such that
A · F = 0 for every component F of the special fibre of C, and let B be any extension of b. We
put

⟨a,b⟩ = −(A ·B) log #k(v).

The link between this construction and the absolute value |− |v is due to the following
observation: let x be a K-point in the support of a, and put V = {x} its closure in C (with the
unique reduced closed subscheme structure). A closed point p in V must be contained in
the special fibre, and OC,p is a regular local ring of dimension 2, with maximal ideal (ϕ,π)
for some π and a local equation ϕ of V around x, and OC,x is then a DVR with maximal
ideal (ϕ). We have a commutative diagram

Op Ox

Op/(ϕ) K.

loc. at (ϕ)

loc. at (0)
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As Op/(ϕ) is a DVR contained in K and which contains Ov (as the scheme is over Ov), it
must be Op/(ϕ) = Ov and v(π) = 1. With this setup, we finally find that, if B is positive
around p, with local equation ψ, then the multiplicity of p in V ∩B is given by

mp = len (Op/(ϕ,ψ)) = v(ψ(x)) = −
log |ψ(x)|v
log #k(v)

. (1)

In particular, when b = (ψ) is principal and we take again (ψ) as its extension, this formula
gives property (1) of 5.2.
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