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1 INTRODUCTION

Let K be a field together with a set Mk of absolute values satisfying the product formula
with weights n,,. In previous talks we have seen global heights in various forms:

¢ For a point of projective space:
1

x = (X0, xn) €PTK) = h(x) = g

> ny, maxlog [xilw,
weM L '
where L is any finite extension of K over which x is defined, My is the set of absolute
values on L extending those of My and

Ly : Ky .

=K



¢ more generally for a morphism f : V. — IP™, h o f is a height. When V is projective we
have a map
Pic(V) — RV /0(1);

¢ for abelian varieties we have a canonical height, the Néron-Tate height, associated to
each line bundle, which satisfies all the nice properties that general global heights
only satisfy up to a bounded function.

In this talk we will try to answer the following question: can we split global heights into
a sum of local contributions A, from each v? The formula for the height on IP™ suggests
that we could choose something that looks like max; log |xi|,. However, this expression is
not even well defined (while the sum was well defined thanks to the product formula). To
remedy this, we have to choose some meromorphic section of O(1) (because the standard
height on IP™ is associated with O(1)), for example x(, and use instead

miax log [xily —log [xoly.-

This is well defined, but it depends on the chosen section, and it is not defined where xy = 0.
This is no coincidence: local heights will not be associated to divisor classes (line bundles),
like in the global case, but to (Cartier) divisors.

The structure of the talk will be as follows:

1. Construction of local heights, and of canonical local heights for abelian varieties.
2. Connection with global heights.

3. The special case of curves. On a regular curve C, a divisor can be identified with
a cycle of closed points. In particular, one might imagine to be able to construct a
pairing (—, —) on pairs of divisors (with some assumptions) such that for points x,y
we get (x,y) = hy(x). This will be the case, both globally and locally, and moreover
we will be able to get a canonical pairing. This pairing will be computable using
intersection theory.

Notation: If X is a scheme, x : SpecF — X is an F-point for some field F, U is a
neighbourhood of x in X, then we get a map x* : O(U) — F, and for ¢ € O(U) we denote its
image by ¢(x) € F.

2 LOCAL HEIGHTS

In this section we follow [Ser97, Chapter 6]. Let K be a field complete with respect to an
absolute value | — |,.. It is convenient to assume K to be algebraically closed. The reader can
consult instead [Lan83, Chapter 10] for a more general (and technical) treatment.
Put

V(=) = —log|—|.
Consider a quasi-projective variety V over K.
The set of K-points V(K) comes equipped with a topology induced by that of K, called the
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K-topology: it is the coarser topology such that, for any Zariski open U and for any f € O(U),
the function [f],, : U(K) — R is continuous ([Lan83, Chapter 10]).

DEFINITION 2.1. A subset B C V(K) is bounded if it satisfies the following condition.

If V = Spec(A) is affine, B is bounded if f(B) is bounded in K for all f € A (this can be
checked on a finite number of generators of A).

In the general case, B is bounded if there exists a finite open affine cover V = [ JU; and B is
the union of subsets B; C U;(K) which are bounded in U;. One can easily see that the two
definitions are compatible.

Warning: This is not equivalent to asking the same condition for all open covers U; and
decompositions B;.

REMARK 2.2. 1. When Kis locally compact a set B is bounded if and only if the closure
B is compact for the K-topology.

2. Projective space is bounded: it is the union of the subsets
Bi ={x € P™(K) | Ixilv = Ixjlv Vj} C {xi # 0},
which are all bounded by 1. More generally, any projective variety is bounded.
3. VL Wisa morphism, the image of any bounded set is bounded.

DEFINITION 2.3. A real valued function on V(K) is strongly continuous if it is continuous
(for the K-topology) and preserves bounded subsets.

REMARK 2.4. 1. When K s locally compact this is equivalent to being continuous.

2. When V = Spec A is affine, any f € A is strongly continuous (by definition of bounded
set).

3. In what follows we will work with projective varieties: in this case the second condi-
tion is equivalent to being bounded on all V(K).

DEFINITION 2.5 (LOCAL HEIGHT). Let D be a Cartier divisor on V. A local height asso-
ciated to D is a real valued function

A:V(K)—=SuppD — R

satisfying the following condition: if U is an affine open of V where D = (¢) is principal,
with ¢ € K(V), then the function

x = A(x) =v(d(x))

defined on U(K) — Supp D extends to a strongly continuous function on U(K). If A exists it
is unique up to a strongly continuous function.

EXAMPLE 2.6. On IP™, with D the hyperplane xo = 0 (with local equation x¢/x; where
xi # 0) we can put

Alx) =v(x0) — O<irilﬁn\1(xi) = max log [xi|y —log [xolv



REMARK 2.7. 1. If D = (¢) is a principal divisor, we may take Ap (x) = v(d(x)).

2. Ap, +Ap, is alocal height for Dy + D>.

3.fV S Wisa morphism, C = f*D, then A¢ = Ap o f is a local height for C. This
follows from the definition of local height, the fact that any local equation of D pulls
back to a local equation of C, and from 2.4(2).

COROLLARY 2.8. Local heights exist for quasi-projective varieties. Using the properties
of the remark one reduces to the cases of the example.

3 NERON’S THEOREM

As before K is an algebraically closed field complete with respect an absolute value | —|,.

THEOREM 3.1. To all pairs (A, D), where A is an abelian variety over K and D is a divisor
on A, there is an associated local height

Ap : A(K)—=SuppD — R,

which is defined up to a constant function, satisfying the following properties (all up to
constants).

1. If D = (¢) is principal, then Ap (x) = v(d(x)).
2. 7\D] —i—)\Dz = }\DlJrDz.

3. If m: A — B is a morphism (not necessarily such that 0 — 0), and if 7*D is defined,
then A\,+p = Ap o7

For the proof we will use the following lemma.

LEMMA 3.2. Let Sbeaset, t: S — S a map, and E the Banach space of bounded real
valued functions on S, with the sup-norm. Let A : E — E be the operator given by f — f o 7.

Then the operator

1
Id— —
d }\A

is invertible for all A > 1, with inverse given by the formula

o0

fHZAinA“.
0

PROOF. We may assume that the divisor class of D is either symmetric or antisymmetric.
Indeed, the divisor group is generated by divisors which are either principal, symmetric or
antisymmetric. Property (1) already defines A for principal divisors, and (2) implies that we
may restrict to a generating subset of the group.



Under the map x — 2x on A, by the formula for pullback of line bundles by multiplication
maps (see for example [Mum?70, 1.6, Corollary 3]) we find

2D =rD+(¢), r=4dorr=2,

where 1 is either 2 or 4 and ¢ is a rational function. Let p be any local height associated to
D, then we have

m(2x) = ru(x) +v(d(x)) +e(x),

where ¢ is a strongly continuous (and thus bounded) function on A(K). From Lemma 3.2
we find a bounded function 1 such that ¢ =n(2x) —m(x), and we put

A=p—m.

This yields
(*) TA(2x) = TA(x) +v(P(x)).

This local height satisfies the required conditions: () has to be satisfied by our required
heights. Moreover, we have the following fact:

LEMMA 3.3. For any w € R, the only bounded function f : A(K) — R satisfying
f(2x) = rf(x) + w

is the constant function f = w/(1 —r).

If two local heights satisfy (x), then they are equal by the case w = 0 of the lemma. The
indeterminacy up to a constant is due to the non-canonical choice of ¢: two functions
¢, € K(V) define the same principal divisor if and only if they differ by a constant factor
o € K. However, two heights satisfying (x) for different choices of ¢ will differ by a constant
v(a) by the lemma. |

REMARK 3.4. The observation that the "up to a constant" part of the theorem is actually
up to a constant v(«) is important when considering all the absolute values of K together:
by the product formula we have v(«) = 0 for almost all v, and when taking sums over all v
these contributions cancel out allowing for canonical global heights.

4 RELATION WITH GLOBAL HEIGHTS

In this section we sketch some of the ideas in [Lan83, Chapter 10 and 11] for connecting the
local heights developed above with global heights.

Let K be a field together with a set of absolute values My satisfying the product formula
with weights n,. Let V be a projective variety over K and D be a Cartier divisor on V; we
know that there exists a notion of global height hp associated to D, and we would like to

have a formula :
hp(x) = ﬁ Z le7\D,w(X)
weML

where the Ap ., are local heights associated to D, and L is a finite extension of K over which
x is defined. There are two obstructions to such a formula.



1. If we just choose any local height for each place independently, there is no guarantee
that the sum will be well defined, i.e., given a point x, it might happen that Ap ,,, (x) # 0
for infinitely many v. This can be circumvented by constructing the local heights all
together, as functions (called Weil functions) of the form

A: (V(K) —Supp(D)) x Mg — R

where My is the set of absolute values on K extending those of M. The constructions
in the sections above generalize to this functions, with the core difference that the
notion of a real constant is replaced by that of an M-constant, i.e., a function

MK—>]R

which is zero for all but finitely many v € Mg. A Weil function has an associated
global height
1
ha(x) = K Z MwAuw (X).
weML
2. The global height is defined over all V(K), but the local heights only outside Supp(D).
The product formula allows to extend the sum on Supp(D). The idea is that if
¢ € K(V) then the Weil function associated to (¢) given by

(x,v) = v(d(x))

has global height zero by the product formula. Therefore we can move a divisor D
with a ¢ without changing the height.

ABELIAN VARIETIES. Let A be an abelian variety, and D a Cartier divisor. [Lan83,
Theorem 11.1.1] generalizes Theorem 3.1, giving a canonical Weil function defined up to
an My-constant and an associated global height h,, which we can normalize by requiring
ha(0) = 0. Let h. denote the Néron-Tate height associated to the class ¢ = CI(D). Then
we have R = h;, because the Néron-Tate height is uniquely determined by its properties,
which are satisfied by h,.

5 THE CASE OF CURVES

We let K be as in the previous section. Let C be a complete, regular, geometrically irreducible
curve over K, and | = Pic®(C) its Jacobian.

For more details we refer to [BG06, Chapter 9.4] and [Gro86]. As Jacobians are self-dual,
there is a class p € Pic(] x J), called the Poincaré class, such that for all a € Pic®(]) = | we
have pljy(qa} = a and pljg;xj = 0. Furthermore, p is invariant under the automorphism of
] x ] that swaps the two factors'.

IThis follows since p = m*0 —p}0 — p30, where 0 is the theta divisor on ] and m,py,pz : J x ] — ] are
respectively the multiplication and the two projections.



COROLLARY 5.1. The Néron-Tate height of p defines a symmetric bilinear form
hp : J(K) x J(K) = R

such that hy(a,b) = hy(a).

Néron in [Nér65] showed that this pairing can be decomposed as a sum of canonical local
pairing. However, as with local heights, these local pairing will not be defined on divisor
classes (e.g. on J) but only on divisors (of degree zero).

We will now decribe this pairings, following [Gro86]. Let K be a field with an absolute
value | —|,, which makes K locally compact.
Let ¢ € K(C) be a function and a = }_my(x) a divisor of degree zero on C, such that (¢)
and a have disjoint support. We put

bla) =] [ o)™,
As a has degree zero, this only depends on the divisor (¢).

PROPOSITION 5.2. For each v there exists a unique bilinear pairing (—, —),,, defined on
pairs (a, b) degree-zero divisors on C which are propetly intersecting (i.e., with disjoint
support, as C is a curve), and such that a is supported on the K-points of C, satisfying the
following properties:

L (a,(¢)) = —logld(a)l.
2. Fixxo € C(K) —Supp(a), then the map

C(K) =Supp(a) = R x = (a, (x) = (x0))v
is strongly continuous.
3. (a,b) = (b, a) when also b has support in C(K).
Moreover, we can extend the pairing to any pair (a, b) of properly intersecting divisors of

degree zero in the following way: if H is a finite extension of K over which a is pointwise

rational, then we put

1
(a,b) = K (a,b)n,

where the second term is the unique pairing for the curve Cy obtained by base change to H.

PROOF. For uniqueness (see [Gro86, §3]), notice that the difference of two such pairings
descends to Pic®(C) = J by property (1), and thus we would get a pairing

J(K) x J(K) = R

which is continuous and bounded in each variable when the other is fixed. This must be
trivial as IR contains no non-trivial compact subgroups.
One can show existence in the following way: take an embedding j : C — ] (by choosing a

7



point xo € C). Given a degree-zero divisor b on C, take a degree-zero divisor D on ] such
that b =j*D + (¢). Then the assignment

P — Ap,(j(P)) +vod(x)

gives a Weil function which is well defined up to a constant. The key observation is that
this constant gets cancelled out if we use degree-zero divisors instead of a point P, thanks
to remark 3.4. For details on this approach we refer to [Lan83, Chapter 11.3]. We will follow
instead another approach, following [Gro86], which gives explicit formulas in terms of
intersection numbers. This construction will be carried out (at least in the non-Archimedean
case) in the next section. [ |

6 COMPUTATION THROUGH INTERSECTION MULTIPLICITIES

In this section we will sketch the construction of the pairing of Proposition 5.2 for non-
Archimedean places, following [Gro86]. This proves existence and provides a way to
compute the pairing, which will be used in the following talks.

Let K be a locally compact field with respect to an absolute value | —|,, O, is its valuation
ring, k(v) is the residue field.

Let C be a complete, regular, geometrically irreducible curve over K, with a regular and
proper model € over O,. We will define an intersection product (— - —) for properly
intersecting divisors on €. Given V, W integral close subschemes of € of codimension 1 that
intersect properly, their fibre product VN'W =V xe Wis a zero-cycle 3} m;(p), with

mp, = len (Oep/(d, W)

and ¢, are local equations of V, W around p.
We define (V- W) as the degree )  my[k(p) : k(v)] (notice that a closed point of € must be
in the special fibre, which is a scheme over k(v), the residue field of O,). This pairing can be
extended by linearity to properly intersecting divisors, and is clearly symmetric.
Now let (a, b) be a pair as in the statement of 5.2. Let A be an extension of a to € such that
A - F = 0 for every component F of the special fibre of C, and let B be any extension of b. We
put

(a,b) = —(A - B)log#k(v).

The link between this construction and the absolute value | — |, is due to the following
observation: let x be a K-point in the support of a, and put V = {x}its closure in € (with the
unique reduced closed subscheme structure). A closed point p in V must be contained in
the special fibre, and O¢,;, is a regular local ring of dimension 2, with maximal ideal (¢, 7t)
for some 7t and a local equation ¢ of V around x, and O¢ « is then a DVR with maximal
ideal (¢). We have a commutative diagram

loc.
Op oc. at () O,

|

0p/(d) ———— K.

loc. at (0)



As Op/(¢) is a DVR contained in K and which contains O, (as the scheme is over 0,), it
must be 0, /($) = O, and v(mr) = 1. With this setup, we finally find that, if B is positive
around p, with local equation 1\, then the multiplicity of p in V N B is given by

log [ (%)

mp = len (Op/(4,1)) = V(b () = =3 =g

@

In particular, when b = (1) is principal and we take again (1) as its extension, this formula
gives property (1) of 5.2.
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