Spectre reel inte reel stale I- Thank d'Adin-Schneder.

Def: un conserve et un comple (F) \(\)

F cops \(\)

a \(\begin{align*} \) \(\) \

Ref: un com F et réel s'el pent être odonné Reg (=3 -1 & Et2 | Et2 = { É ni2, rich new). Reg : con F =p>0 -> F ve pent pes être adonné

Cops væls les

Peg: F comps rael los ni F est reel et VF/F von triviales F' n'est pas rael alganique

Thun: sit F un corps. LAJSE:

(a) F real clas (6) Fodnet un unique volve dont le come 20 ex { x2, xef}, to i fEFCX) des f import = 2xEt, lesso. (c) la F-agèle F[t]/(1/41) et un copo af. F(Fi) er : IR reel dos, IRay reel dos Clatere relle Déf: cont (BE) un copo odomé; me dotine reille de Fet me extansion R/F on (i) Rosel dos; (ii) R/F et of; (iii) F-, R présere Modre. ex: Q C, Kal = doture roelle Thun: - bont cops ordoné about une clotur rolle . Jost (F, El cops odené

RIF R' réel dos, F-sR' présence l'odre.

P/F doture realle

alos 31 &: R = R' F. morphone (préseire automatiquent l'asse 1) hi R'/F et me dôtre reelly q est un tro. Re: on parle donc de la dôtrue réalle de (F.E)_ Principe de Tarski. Seidenberg $a, b, c \in \mathbb{R}$ $(7 \% an^2 + bn + czo)$ $(=) (b^2 - kac > 0).$ 0 £ > R red clos at R sign (ee) = (-1 si aco noit $f_{(1-)}$ $f_{3} \in \{Z(X,7)\}^{\gamma} = (Y_{1-}, Y_{n})$ 9: [1, s] - {-40,1] 7 B(Y) continaison boolseure à l'inégalité pol à coeff do 2 en $(x_1 - x_n)$: $x \in \mathbb{R}$ endel clos, $y \in \mathbb{R}^n$, $\begin{cases} nign f_n(x,y) = 4(n) \\ nign f_s(x,y) = 20 \end{cases}$ a me pol (=) D(y) voule

With pour les consuntilles. [BCR] I Spectre real, rite recel étale Def: A anneau Span $A = \{\xi_{-}(x, \xi), \xi_{-}(x, \xi)\}$ acA D (2) = { \$, a (\$) > 0} a (\$) = (1 - x (\$)) datue ralle de(ka) < ctop: overts = U () D (a) topologie de Zanthi de Sper A. ex: for Q = (x) frex k = (x) & red dos Ser K=p zi R&K Ans Sper A fonctorielle f: A->B & Sper B y Spee b 7= { (y) Ka) s Ky) f * (5) = 5 g = (n, <). fx: Sper b-> Sper A 60

Supp: Sper A - Spee A Sper A -> Spec A (2 <) ~ 2 for B - Spee B Sper A meetal is topologie sur Sper A & constructible (C= Vine Ni ouveits quani-upouts ex: (constructible -) fante par la top landand (Activolei) \$'4\$ (=) \$ \(\xi \) \(\xi' \) X scheue X - U li li li li Afre ive X = V m

le, Sper Ox(Ui) re recollent en X r

repare red

amuré à n Site real Etle (f.: Ui - r U); et evel - myeetore n'
schenes
Un = i br (Ui) r) Leme: X shows. Les familles réel sujectives de maybones de X. shéves induisent une prélipologie mes

Xn d: Sperk - X le rool clos Sech Sech Sech R'S

Ser le Sech R'S

11 11 15 K(N) - K(E) / L" RPI, R", S red lles let, le ste red-étale de X et (EL /X, ret) : ret n'est pas sons-anonique [les purfaisceaux eprésentebles ne sent pas tonjons des faisceans). Shelk D(T2H) Collin -X Sch/X u ux u=u Hen (x, X) - Hom (U, X) 1 (Pros)

How (EX) n'est pas un foiscean.

Thun: X oct = (Ét/x, rét) y Xrét topos = faisann/xrét dos Xrét X2 X2 opace réal considér X. Xout = Xoun - Xr étales en lonnée locum que les espaces Avueur de valuation rolls de l'écure les récéditations A anneau de valuation rocal cles A et un anneau de valuation (A intégrés K=FracA net en c'EA) et track of sont reals clos iutige et de inhabien rele des (>) A CK Convexe on Knied clos. (A curries x \(\) (3) 3EA) YEA avre (anneau de voluation recel clos) &'> & A Spea A ~ Spec A

Print correspondent à A-, KA àACK soit X Estitua \$155 spécialisation de X (3EE 915) on dit que \$ 1 & et valuite pour v: V - X rec b, B de val. ræl des 2 3/= ~(M/) \$=~(M) n1 pt gendrique de Ger B n pt femé de Sper B. Levre: toute provolvation de Xr est contraile avis V / v / X yt, x y e y ky) / k(f(y)) alg. a) d: Spec R -> X M & EX reel dos

Hom X (Greck, Y) -> Yr 2 fr (5) , '36 iduste par v a) \times - Spec \times (\star) Y -> Y2 = II he kg) feg=2 X - Spec & Y - Spec K. Speck Joseph F! p:K-, R k-mon-5 och zu K quir brokert & ordre sur le to q indert (

K -> L = dotue ruelle de K et de le K(g) / K(fg)) alg Un la connete aux produits filme de Ét/X vers Pap. of Injection par le leure (a)). up creat un house il suffit de my £1/28 ~ 5/25 To préserve les spain-

bil du leune Rug: f:Y-X Ele => fr: h->2 It have look. den: mg la ouverte. ie for relive les généralisations.

Joé à your constitute y r 7/5 9 done à T-S

C conshedille)

X r C conshelille) se remever à X, Y affire aper K = 3

X cops
presentuel

The suduel

The suduel dupt V _____X fent de V de voluntion reel clas [albh changement de base le long Tol: V - V Le trever une scatter de Y-9 V

Lene: V huselsen f EARX untare V=See A Ft & TX) brache right de F () changement de nique de [alos f(n) f(y) co. adre sur le : 3 E A* 3 >0 (=) 78) >0 projection Handard done 7 ac (v,y) to fare (TVB) Nos T(a) -b. Pas fini!